logo

Derivát Arctanu

Derivácia funkcie arkustangens sa označuje ako tan-1(x) alebo arctan(x). To sa rovná 1/(1+x 2 ) . Derivácia funkcie arkustangens sa zistí určením rýchlosti zmeny funkcie arc tan vzhľadom na nezávislú premennú. Technika hľadania derivácií goniometrických funkcií sa označuje ako goniometrická diferenciácia.

Derivát Arctanu



V tomto článku sa dozvieme o deriváte arc tan x a jeho vzorci vrátane dôkazu vzorca. Okrem toho sme pre lepšie pochopenie poskytli aj niekoľko vyriešených príkladov.

Derivát Arctan x

Derivácia funkcie arkus tangens alebo arctan(x) je 1/(1+x 2 ). Arktus x predstavuje uhol, ktorého dotyčnica je x. Inými slovami, ak y = arctan(x), potom tan(y) = x.

Deriváciu funkcie možno nájsť pomocou reťazového pravidla. Ak máte zloženú funkciu ako arctan(x), diferencujete vonkajšiu funkciu vzhľadom na vnútornú funkciu a potom vynásobíte deriváciou vnútornej funkcie.



Derivát Arctan x Formula

Vzorec pre deriváciu inverznej hodnoty tan x je daný:

d/dx(arktán(x)) = 1/(1+x 2 )

Tiež skontrolujte :



Dôkaz derivátu Arctan x

Deriváciu inverznej hodnoty tan x možno dokázať nasledujúcimi spôsobmi:

  • Použitím Pravidlo reťaze
  • Použitím Metóda implicitnej diferenciácie
  • Použitie prvých princípov derivátov

Derivát Arctan x podľa reťazového pravidla

Na dôkaz derivácie Arctanu x reťazovým pravidlom použijeme základný trigonometrický a inverzný trigonometrický vzorec:

  • sek2y = 1 + tan2a
  • tan(arktan x) = x

Tu je dôkaz derivátu arctan x:

Predpokladajme, že y = arctan(x)

Opálením na oboch stranách dostaneme:

tan y = tan(arktan X)

tan y = x [ako tan (arktan x) = x]

Teraz rozlíšte obe strany vzhľadom na x

d/dx (tan y) = d/dx(x)

d/dx(tan y) = 1 [ako d/dx(x) = 1]

Aplikovaním reťazového pravidla na diferenciáciu tan y vzhľadom na x dostaneme

d/dx(tan y) = sek2y · dy/dx = 1

dy/dx = 1/s2a

dy/dx = 1/1 + tan2y [ako sek2y = 1 + tan2a]

Teraz vieme, že tan y = x, dosadením hodnoty vo vyššie uvedenej rovnici dostaneme

dy/dx = 1/1 + x2

Derivát Arctan x metódou implicitnej diferenciácie

Derivát arktanu x možno dokázať pomocou metódy implicitnej diferenciácie. Použijeme základné trigonometrické vzorce, ktoré sú uvedené nižšie:

  • sek2x = (1 + tan2X )
  • Ak y = arctan x ⇒ x = tan y a x2= tak2a

Začnime s dôkazom derivátu arctanu x , predpokladajme, že f(x) = y = arctan X

Metódou implicitnej diferenciácie

f(x) = y = arktan X

⇒ x = tan y

Prijatie derivácie na oboch stranách vzhľadom na x

⇒ d/dx[x] = d/dx[tan y]

⇒ 1 = d/dx[tan y]

java vs c++

Násobenie a delenie pravej strany dy

⇒ 1 = d/dx[tan y] x dy/dy

⇒ 1 = d/dy[tan y] x dy/dx

⇒ 1 = sek2y × dy/dx

⇒ dx/dy = ( 1+tan2y) [Ako ods2x = (1 + tan2X )]

⇒ dy/dx = 1/( 1+tan2a )

⇒ dy/dx = 1/( 1 + x2) = f'(x)

Preto f'(x) = 1/ ( 1+x2)

Derivát Arctan x podľa prvého princípu

Na dôkaz derivácie arctanu x pomocou prvého princípu derivácie použijeme základné limity a trigonometrické vzorce, ktoré sú uvedené nižšie:

  • limh→0arctan x/x = 1
  • arctan x – arctan y = arctan [(x – y)/(1 + xy)]

Začnime s dôkazom pre derivát arctan x

máme arctan(x) = y

Aplikujte definíciu derivácie, ktorú dostaneme

frac{d arctan x}{dx} =displaystyle lim_{h o 0} frac{arctan (x + h)- arctan x}{h}

frac{d arctan x}{dx} =displaystyle lim_{h o 0} frac{arctan( frac {x + h – x}{1 + (x + h)x})}{h}

frac{d arctan x}{dx} =displaystyle lim_{h o 0} frac{arctan( frac { h}{1 + (x + h)x})}{h imes frac{1 + (x+h)x}{1 + (x + h)x}}

frac{d arctan x}{dx} =displaystyle lim_{h o 0} frac{arctan( frac {h}{1 + (x + h)x})}{(1+(x+h)x) imes frac{h}{1 + (x + h)x}}

frac{d arctan x}{dx} =displaystyle lim_{h o 0} frac{1}{(1 +(x+h)x)} imes displaystyle lim_{ h o 0}frac{arctanfrac{h}{1+(x+h)x}}{frac{h}{1+(x+h)x}}

frac{d arctan x}{dx} =displaystyle lim_{h o 0} frac{1}{(1 +x^2+hx)} imes 1

frac{d arctan x}{dx} = frac{1}{(1 +x^2)}

Tiež skontrolujte

Príklady na derivát Arctan x

Príklad 1: Nájdite deriváciu funkcie f(x) = arctan(3x).

Riešenie:

Použijeme reťazové pravidlo, ktoré hovorí, že ak je g(x) diferencovateľné v x a f(x) = arctan (g(x)), potom derivácia f'(x) je daná vzťahom:

f'(x) = g'(X)/(1+[g(x)]2)

V tomto prípade g(x) = 3x, takže g'(X) = 3. Použitie vzorca reťazového pravidla:

f'(x) = 3/(1+(3x)2)

f'(x) = 3/(1+9x2)

Príklad 2: Nájdite deriváciu funkcie h(x) = tan -1 (x/2)

Riešenie:

Použijeme reťazové pravidlo, podľa ktorého f(x) = tan-1(g(x)), potom je derivácia f'(x) daná vzťahom:

f'(x) = g'(X)/(1+[g(x)]2)

V tomto prípade g(x) = x/2, teda g'(X) = 1/2. Použitie vzorca reťazového pravidla:

f'(x) = (1/2)/(1+(x/2)2)

f'(x) = (1/2)/(1+x2/4)

Zjednodušením dostaneme,

f'(x) = 2/(4+x2)

Príklad 3: Nájdite deriváciu f(x) = arctan (2x 2 )

sčítačka plná

Riešenie:

Použijeme reťazové pravidlo, ktoré hovorí, že ak je g(x) diferencovateľné v x a f(x) = arctan (g(x)), potom je derivácia f'(x) daná vzťahom:

f'(x) = g'(X)/(1+[g(x)]2)

V tomto prípade g(x) = 2x2, takže g'(X) = 4x.

Použitie vzorca reťazového pravidla:

f'(x) = 4x/(1+(2x2)2)

f'(x) = 4x/(1+4x4)

f'(x) = d/dx(arktán (2x2)) = 4x/(1+4x4)

Cvičné otázky o deriváte Arctan x

Q.1: Nájdite deriváciu funkcie f(x) = x 2 arkán (2x)

Q.2: Nájdite deriváciu funkcie k(x) = arctan (X 3 +2x)

Q.3: Nájdite deriváciu funkcie p(x) = x arctan(x 2 +1)

Q.4: Nájdite deriváciu funkcie f(x) = arctan (x)/1+x

Q.5: Nájdite deriváciu funkcie r(x) = arctan (4x)

Čítaj viac,

  • Derivácia v matematike
  • Derivát tan inverznej x
  • Arctan

Derivát Arctan x – často kladené otázky

Čo je to derivát v matematike?

V matematike derivácie merajú, ako sa funkcia mení, keď sa mení jej vstup (nezávislá premenná). Derivácia funkcie f(x) sa označuje ako f'(x) alebo (d /dx)[f(x)].

Čo je to derivát tan -1 (X)?

Derivát opálenia-1(x) vzhľadom na x je 1/1+x2

Čo je inverzná hodnota tan x?

Arctan je inverzná funkcia tan a je to jedna z inverzných goniometrických funkcií. Je tiež známa ako arktanová funkcia.

Čo je reťazové pravidlo v Arktáne (X)?

Reťazové pravidlo je pravidlom diferenciácie. Pre arktan (u), reťazové pravidlo hovorí, že ak f(x) = arctan(u), potom f'(x) = (1/1+u2)× du/dx. Aplikovaním tohto na arctan(x), kde u=x, dostaneme 1/1+x2

Čo je derivát f(x) = x tan -1 (X)?

Derivácia f(x) = xtan-1(x) možno nájsť pomocou pravidla produktu. Výsledkom je tak -1 (x) + {x/(1 + x 2 )} .

Čo je to antiderivát Arctan x?

Antiderivát arctanu x je daný ako ∫tan-1x dx = x opálenie-1x – ½ ln |1+x2| + C.

Čo je derivát?

Derivácia funkcie je definovaná ako rýchlosť zmeny funkcie vzhľadom na nezávislú premennú.