Postupnosť {X1 X2 .. Xn} je striedavá postupnosť, ak jej prvky spĺňajú jeden z nasledujúcich vzťahov:
X1< X2 >X3< X4 >X5< …. xn or
X1 > X2< X3 >X4< X5 >…. xn
Príklady:
Odporúčaná prax Najdlhšia striedavá podsekvencia Skúste to!Vstup: arr[] = {1 5 4}
výstup: 3
Vysvetlenie: Celé polia majú tvar x1< x2 >x3Vstup: arr[] = {10 22 9 33 49 50 31 60}
výstup: 6
Vysvetlenie: Podsekvencie {10 22 9 33 31 60} alebo
{10 22 9 49 31 60} alebo {10 22 9 50 31 60}
sú najdlhšou podsekvenciou dĺžky 6
Poznámka: Tento problém je rozšírením problém s najdlhšie rastúcou podsekvenciou ale vyžaduje viac myslenia na nájdenie optimálnej vlastnosti subštruktúry v tomto
Najdlhšia striedavá podsekvencia s použitím dynamické programovanie :
Ak chcete problém vyriešiť, postupujte podľa nasledujúcej myšlienky:
Tento problém vyriešime metódou dynamického programovania, keďže má optimálnu podštruktúru a prekrývajúce sa podproblémy
stiahnite si videá z youtube pomocou vlc
Na vyriešenie problému postupujte podľa nasledujúcich krokov:
- Nech A je dané pole dĺžky N
- Definujeme 2D pole las[n][2] tak, že las[i][0] obsahuje najdlhšiu striedajúcu sa podsekvenciu končiacu na indexe i a posledný prvok je väčší ako jeho predchádzajúci prvok
- las[i][1] obsahuje najdlhšiu striedavú podsekvenciu končiacu na indexe i a posledný prvok je menší ako jeho predchádzajúci prvok, potom medzi nimi máme nasledujúci rekurentný vzťah
las[i][0] = Dĺžka najdlhšej striedavej podsekvencie
končiace na indexe i a posledný prvok je väčší
než jeho predchádzajúci prvok[i][1] = Dĺžka najdlhšej striedavej podsekvencie
končiace na indexe i a posledný prvok je menší
než jeho predchádzajúci prvokRekurzívna formulácia:
las[i][0] = max (las[i][0] las[j][1] + 1);
pre všetkých j< i and A[j] < A[i]las[i][1] = max (las[i][1] las[j][0] + 1);
pre všetkých j< i and A[j] >A[i]všetky veľké písmená príkaz excel
- Prvý rekurentný vzťah je založený na skutočnosti, že ak sme na pozícii i a tento prvok musí byť väčší ako jeho predchádzajúci prvok, tak aby táto postupnosť (až i) bola väčšia, pokúsime sa vybrať prvok j (< i) such that A[j] < A[i] i.e. A[j] can become A[i]’s previous element and las[j][1] + 1 is bigger than las[i][0] then we will update las[i][0].
- Pamätajte, že sme zvolili las[j][1] + 1 nie las[j][0] + 1, aby sme splnili alternatívnu vlastnosť, pretože v las[j][0] je posledný prvok väčší ako predchádzajúci a A[i] je väčší ako A[j], čo pri aktualizácii poruší vlastnosť striedania. Takže vyššie uvedený fakt odvodzuje prvý rekurentný vzťah a podobný argument možno urobiť aj pre druhý rekurentný vzťah.
Nižšie je uvedená implementácia vyššie uvedeného prístupu:
C++// C++ program to find longest alternating // subsequence in an array #include using namespace std; // Function to return max of two numbers int max(int a int b) { return (a > b) ? a : b; } // Function to return longest alternating // subsequence length int zzis(int arr[] int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[n][2]; // Initialize all values from 1 for (int i = 0; i < n; i++) las[i][0] = las[i][1] = 1; // Initialize result int res = 1; // Compute values in bottom up manner for (int i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for (int j = 0; j < i; j++) { // If arr[i] is greater then // check with las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller then // check with las[j][0] if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } // Pick maximum of both values at index i if (res < max(las[i][0] las[i][1])) res = max(las[i][0] las[i][1]); } return res; } // Driver code int main() { int arr[] = { 10 22 9 33 49 50 31 60 }; int n = sizeof(arr) / sizeof(arr[0]); cout << 'Length of Longest alternating ' << 'subsequence is ' << zzis(arr n); return 0; } // This code is contributed by shivanisinghss2110
C // C program to find longest alternating subsequence in // an array #include #include // function to return max of two numbers int max(int a int b) { return (a > b) ? a : b; } // Function to return longest alternating subsequence length int zzis(int arr[] int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[n][2]; /* Initialize all values from 1 */ for (int i = 0; i < n; i++) las[i][0] = las[i][1] = 1; int res = 1; // Initialize result /* Compute values in bottom up manner */ for (int i = 1; i < n; i++) { // Consider all elements as previous of arr[i] for (int j = 0; j < i; j++) { // If arr[i] is greater then check with // las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller then check with // las[j][0] if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < max(las[i][0] las[i][1])) res = max(las[i][0] las[i][1]); } return res; } /* Driver code */ int main() { int arr[] = { 10 22 9 33 49 50 31 60 }; int n = sizeof(arr) / sizeof(arr[0]); printf( 'Length of Longest alternating subsequence is %dn' zzis(arr n)); return 0; }
Java // Java program to find longest // alternating subsequence in an array import java.io.*; class GFG { // Function to return longest // alternating subsequence length static int zzis(int arr[] int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[][] = new int[n][2]; /* Initialize all values from 1 */ for (int i = 0; i < n; i++) las[i][0] = las[i][1] = 1; int res = 1; // Initialize result /* Compute values in bottom up manner */ for (int i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for (int j = 0; j < i; j++) { // If arr[i] is greater then // check with las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller then // check with las[j][0] if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.max(las[i][0] las[i][1])) res = Math.max(las[i][0] las[i][1]); } return res; } /* Driver code*/ public static void main(String[] args) { int arr[] = { 10 22 9 33 49 50 31 60 }; int n = arr.length; System.out.println('Length of Longest ' + 'alternating subsequence is ' + zzis(arr n)); } } // This code is contributed by Prerna Saini
Python3 # Python3 program to find longest # alternating subsequence in an array # Function to return max of two numbers def Max(a b): if a > b: return a else: return b # Function to return longest alternating # subsequence length def zzis(arr n): '''las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element''' las = [[0 for i in range(2)] for j in range(n)] # Initialize all values from 1 for i in range(n): las[i][0] las[i][1] = 1 1 # Initialize result res = 1 # Compute values in bottom up manner for i in range(1 n): # Consider all elements as # previous of arr[i] for j in range(0 i): # If arr[i] is greater then # check with las[j][1] if (arr[j] < arr[i] and las[i][0] < las[j][1] + 1): las[i][0] = las[j][1] + 1 # If arr[i] is smaller then # check with las[j][0] if(arr[j] > arr[i] and las[i][1] < las[j][0] + 1): las[i][1] = las[j][0] + 1 # Pick maximum of both values at index i if (res < max(las[i][0] las[i][1])): res = max(las[i][0] las[i][1]) return res # Driver Code arr = [10 22 9 33 49 50 31 60] n = len(arr) print('Length of Longest alternating subsequence is' zzis(arr n)) # This code is contributed by divyesh072019
C# // C# program to find longest // alternating subsequence // in an array using System; class GFG { // Function to return longest // alternating subsequence length static int zzis(int[] arr int n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int[ ] las = new int[n 2]; /* Initialize all values from 1 */ for (int i = 0; i < n; i++) las[i 0] = las[i 1] = 1; // Initialize result int res = 1; /* Compute values in bottom up manner */ for (int i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for (int j = 0; j < i; j++) { // If arr[i] is greater then // check with las[j][1] if (arr[j] < arr[i] && las[i 0] < las[j 1] + 1) las[i 0] = las[j 1] + 1; // If arr[i] is smaller then // check with las[j][0] if (arr[j] > arr[i] && las[i 1] < las[j 0] + 1) las[i 1] = las[j 0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.Max(las[i 0] las[i 1])) res = Math.Max(las[i 0] las[i 1]); } return res; } // Driver Code public static void Main() { int[] arr = { 10 22 9 33 49 50 31 60 }; int n = arr.Length; Console.WriteLine('Length of Longest ' + 'alternating subsequence is ' + zzis(arr n)); } } // This code is contributed by anuj_67.
PHP // PHP program to find longest // alternating subsequence in // an array // Function to return longest // alternating subsequence length function zzis($arr $n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ $las = array(array()); /* Initialize all values from 1 */ for ( $i = 0; $i < $n; $i++) $las[$i][0] = $las[$i][1] = 1; $res = 1; // Initialize result /* Compute values in bottom up manner */ for ( $i = 1; $i < $n; $i++) { // Consider all elements // as previous of arr[i] for ($j = 0; $j < $i; $j++) { // If arr[i] is greater then // check with las[j][1] if ($arr[$j] < $arr[$i] and $las[$i][0] < $las[$j][1] + 1) $las[$i][0] = $las[$j][1] + 1; // If arr[i] is smaller then // check with las[j][0] if($arr[$j] > $arr[$i] and $las[$i][1] < $las[$j][0] + 1) $las[$i][1] = $las[$j][0] + 1; } /* Pick maximum of both values at index i */ if ($res < max($las[$i][0] $las[$i][1])) $res = max($las[$i][0] $las[$i][1]); } return $res; } // Driver Code $arr = array(10 22 9 33 49 50 31 60 ); $n = count($arr); echo 'Length of Longest alternating ' . 'subsequence is ' zzis($arr $n) ; // This code is contributed by anuj_67. ?> JavaScript <script> // Javascript program to find longest // alternating subsequence in an array // Function to return longest // alternating subsequence length function zzis(arr n) { /*las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ let las = new Array(n); for (let i = 0; i < n; i++) { las[i] = new Array(2); for (let j = 0; j < 2; j++) { las[i][j] = 0; } } /* Initialize all values from 1 */ for (let i = 0; i < n; i++) las[i][0] = las[i][1] = 1; let res = 1; // Initialize result /* Compute values in bottom up manner */ for (let i = 1; i < n; i++) { // Consider all elements as // previous of arr[i] for (let j = 0; j < i; j++) { // If arr[i] is greater then // check with las[j][1] if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; // If arr[i] is smaller then // check with las[j][0] if( arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } /* Pick maximum of both values at index i */ if (res < Math.max(las[i][0] las[i][1])) res = Math.max(las[i][0] las[i][1]); } return res; } let arr = [ 10 22 9 33 49 50 31 60 ]; let n = arr.length; document.write('Length of Longest '+ 'alternating subsequence is ' + zzis(arr n)); // This code is contributed by rameshtravel07. </script>
Výstup
Length of Longest alternating subsequence is 6
Časová zložitosť: O(N2)
Pomocný priestor: O(N), pretože bolo zabratých N priestoru navyše
Efektívny prístup: Ak chcete problém vyriešiť, postupujte podľa nasledujúcej myšlienky:
Vo vyššie uvedenom prístupe v každom okamihu sledujeme dve hodnoty (dĺžka najdlhšej striedavej podsekvencie končiacej na indexe i a posledný prvok je menší alebo väčší ako predchádzajúci prvok) pre každý prvok v poli. Na optimalizáciu priestoru potrebujeme uložiť iba dve premenné pre prvok na ľubovoľnom indexe i
inc = dĺžka doteraz najdlhšej alternatívnej sekvencie, pričom aktuálna hodnota je väčšia ako predchádzajúca hodnota.
dec = Dĺžka doteraz najdlhšej alternatívnej podsekvencie, pričom aktuálna hodnota je menšia ako predchádzajúca hodnota.
Zložitou časťou tohto prístupu je aktualizovať tieto dve hodnoty.'inc' by sa malo zvýšiť vtedy a len vtedy, ak bol posledný prvok v alternatívnej sekvencii menší ako jeho predchádzajúci prvok.
'dec' by sa malo zvýšiť vtedy a len vtedy, ak posledný prvok v alternatívnej sekvencii bol väčší ako jeho predchádzajúci prvok.
Na vyriešenie problému postupujte podľa nasledujúcich krokov:
- Deklarujte dve celé čísla inc a dec rovné jednej
- Spustite slučku pre i [1 N-1]
- Ak je arr[i] väčšie ako predchádzajúci prvok, potom nastavte inc rovný dec + 1
- V opačnom prípade, ak je arr[i] menšie ako predchádzajúci prvok, nastavte dec rovný inc + 1
- Vráťte maximum vr
Nižšie je uvedená implementácia vyššie uvedeného prístupu:
C++// C++ program for above approach #include using namespace std; // Function for finding // longest alternating // subsequence int LAS(int arr[] int n) { // 'inc' and 'dec' initialized as 1 // as single element is still LAS int inc = 1; int dec = 1; // Iterate from second element for (int i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // 'inc' changes if 'dec' // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // 'dec' changes if 'inc' // changes dec = inc + 1; } } // Return the maximum length return max(inc dec); } // Driver Code int main() { int arr[] = { 10 22 9 33 49 50 31 60 }; int n = sizeof(arr) / sizeof(arr[0]); // Function Call cout << LAS(arr n) << endl; return 0; }
Java // Java Program for above approach public class GFG { // Function for finding // longest alternating // subsequence static int LAS(int[] arr int n) { // 'inc' and 'dec' initialized as 1 // as single element is still LAS int inc = 1; int dec = 1; // Iterate from second element for (int i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // 'inc' changes if 'dec' // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // 'dec' changes if 'inc' // changes dec = inc + 1; } } // Return the maximum length return Math.max(inc dec); } // Driver Code public static void main(String[] args) { int[] arr = { 10 22 9 33 49 50 31 60 }; int n = arr.length; // Function Call System.out.println(LAS(arr n)); } }
Python3 # Python3 program for above approach def LAS(arr n): # 'inc' and 'dec' initialized as 1 # as single element is still LAS inc = 1 dec = 1 # Iterate from second element for i in range(1 n): if (arr[i] > arr[i-1]): # 'inc' changes if 'dec' # changes inc = dec + 1 elif (arr[i] < arr[i-1]): # 'dec' changes if 'inc' # changes dec = inc + 1 # Return the maximum length return max(inc dec) # Driver Code if __name__ == '__main__': arr = [10 22 9 33 49 50 31 60] n = len(arr) # Function Call print(LAS(arr n))
C# // C# program for above approach using System; class GFG { // Function for finding // longest alternating // subsequence static int LAS(int[] arr int n) { // 'inc' and 'dec' initialized as 1 // as single element is still LAS int inc = 1; int dec = 1; // Iterate from second element for (int i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // 'inc' changes if 'dec' // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // 'dec' changes if 'inc' // changes dec = inc + 1; } } // Return the maximum length return Math.Max(inc dec); } // Driver code static void Main() { int[] arr = { 10 22 9 33 49 50 31 60 }; int n = arr.Length; // Function Call Console.WriteLine(LAS(arr n)); } } // This code is contributed by divyeshrabadiya07
JavaScript <script> // Javascript program for above approach // Function for finding // longest alternating // subsequence function LAS(arr n) { // 'inc' and 'dec' initialized as 1 // as single element is still LAS let inc = 1; let dec = 1; // Iterate from second element for (let i = 1; i < n; i++) { if (arr[i] > arr[i - 1]) { // 'inc' changes if 'dec' // changes inc = dec + 1; } else if (arr[i] < arr[i - 1]) { // 'dec' changes if 'inc' // changes dec = inc + 1; } } // Return the maximum length return Math.max(inc dec); } let arr = [ 10 22 9 33 49 50 31 60 ]; let n = arr.length; // Function Call document.write(LAS(arr n)); // This code is contributed by mukesh07. </script>
výstup:
c++ rozdelený reťazec
6
Časová zložitosť: O(N)
Pomocný priestor: O(1)
Vytvoriť kvíz