logo

Najväčší produkt podskupiny veľkosti k

Vyskúšajte to na GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Dané pole pozostávajúce z n kladných celých čísel a celého čísla k. Nájdite najväčšie podpole produktov s veľkosťou k, t. j. nájdite maximálnu produkciu k súvislých prvkov v poli, kde k<= n.
Príklady:  

    Input:    arr[] = {1 5 9 8 2 4  
1 8 1 2}
k = 6
Output: 4608
The subarray is {9 8 2 4 1 8}
Input: arr[] = {1 5 9 8 2 4 1 8 1 2}
k = 4
Output: 720
The subarray is {5 9 8 2}
Input: arr[] = {2 5 8 1 1 3};
k = 3
Output: 80
The subarray is {2 5 8}
Recommended Practice Najväčší produkt Skúste to!

Prístup hrubou silou:



ako funguje počítač

Iterujeme cez všetky podpolia veľkosti k pomocou dvoch vnorených slučiek. Vonkajšia slučka prebieha od 0 do n-k a vnútorná slučka prebieha od i do i+k-1. Vypočítame súčin každého podpolia a aktualizujeme maximálny doteraz nájdený súčin. Nakoniec vraciame maximálny produkt.

Tu sú kroky pre vyššie uvedený prístup:

  1. Inicializujte premennú maxProduct na INT_MIN, ktorá predstavuje najmenšiu možnú celočíselnú hodnotu.
  2. Iterujte cez všetky podpolia veľkosti k pomocou dvoch vnorených slučiek.
  3. Vonkajšia slučka prebieha od 0 do n-k.
  4. Vnútorná slučka prebieha od i do i+k-1, kde i je počiatočný index podpolia.
  5. Vypočítajte súčin aktuálneho podpola pomocou vnútornej slučky.
  6. Ak je produkt väčší ako maxProduct, aktualizujte maxProduct na aktuálny produkt.
  7. Ako výsledok vráťte maxProduct.

Nižšie je uvedený kód vyššie uvedeného prístupu:



C++
// C++ program to find the maximum product of a subarray // of size k. #include    using namespace std; // This function returns maximum product of a subarray // of size k in given array arr[0..n-1]. This function // assumes that k is smaller than or equal to n. int findMaxProduct(int arr[] int n int k) {  int maxProduct = INT_MIN;  for (int i = 0; i <= n - k; i++) {  int product = 1;  for (int j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = max(maxProduct product);  }  return maxProduct; } // Driver code int main() {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = sizeof(arr1)/sizeof(arr1[0]);  cout << findMaxProduct(arr1 n k) << endl;  k = 4;  cout << findMaxProduct(arr1 n k) << endl;  int arr2[] = {2 5 8 1 1 3};  k = 3;  n = sizeof(arr2)/sizeof(arr2[0]);  cout << findMaxProduct(arr2 n k);  return 0; } 
Java
import java.util.Arrays; public class Main {  // This function returns the maximum product of a subarray of size k in the given array  // It assumes that k is smaller than or equal to the length of the array.  static int findMaxProduct(int[] arr int n int k) {  int maxProduct = Integer.MIN_VALUE;  for (int i = 0; i <= n - k; i++) {  int product = 1;  for (int j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = Math.max(maxProduct product);  }  return maxProduct;  }  // Driver code  public static void main(String[] args) {  int[] arr1 = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = arr1.length;  System.out.println(findMaxProduct(arr1 n k));  k = 4;  System.out.println(findMaxProduct(arr1 n k));  int[] arr2 = {2 5 8 1 1 3};  k = 3;  n = arr2.length;  System.out.println(findMaxProduct(arr2 n k));  } } 
Python3
# Python Code def find_max_product(arr k): max_product = float('-inf') # Initialize max_product to negative infinity n = len(arr) # Get the length of the input array # Iterate through the array with a window of size k for i in range(n - k + 1): product = 1 # Initialize product to 1 for each subarray for j in range(i i + k): product *= arr[j] # Calculate the product of the subarray max_product = max(max_product product) # Update max_product if necessary return max_product # Return the maximum product of a subarray of size k # Driver code if __name__ == '__main__': arr1 = [1 5 9 8 2 4 1 8 1 2] k = 6 print(find_max_product(arr1 k)) # Output 25920 k = 4 print(find_max_product(arr1 k)) # Output 1728 arr2 = [2 5 8 1 1 3] k = 3 print(find_max_product(arr2 k)) # Output 80 # This code is contributed by guptapratik 
C#
using System; public class GFG {  // This function returns the maximum product of a subarray of size k in the given array  // It assumes that k is smaller than or equal to the length of the array.  static int FindMaxProduct(int[] arr int n int k)  {  int maxProduct = int.MinValue;  for (int i = 0; i <= n - k; i++)  {  int product = 1;  for (int j = i; j < i + k; j++)  {  product *= arr[j];  }  maxProduct = Math.Max(maxProduct product);  }  return maxProduct;  }  // Driver code  public static void Main(string[] args)  {  int[] arr1 = { 1 5 9 8 2 4 1 8 1 2 };  int k = 6;  int n = arr1.Length;  Console.WriteLine(FindMaxProduct(arr1 n k));  k = 4;  Console.WriteLine(FindMaxProduct(arr1 n k));  int[] arr2 = { 2 5 8 1 1 3 };  k = 3;  n = arr2.Length;  Console.WriteLine(FindMaxProduct(arr2 n k));  } } 
JavaScript
// This function returns the maximum product of a subarray of size k in the given array // It assumes that k is smaller than or equal to the length of the array. function findMaxProduct(arr k) {  let maxProduct = Number.MIN_VALUE;  const n = arr.length;  for (let i = 0; i <= n - k; i++) {  let product = 1;  for (let j = i; j < i + k; j++) {  product *= arr[j];  }  maxProduct = Math.max(maxProduct product);  }  return maxProduct; } // Driver code const arr1 = [1 5 9 8 2 4 1 8 1 2]; let k = 6; console.log(findMaxProduct(arr1 k)); k = 4; console.log(findMaxProduct(arr1 k)); const arr2 = [2 5 8 1 1 3]; k = 3; console.log(findMaxProduct(arr2 k)); 

Výstup
4608 720 80

Časová zložitosť: O(n*k) kde n je dĺžka vstupného poľa a k je veľkosť podpola, pre ktoré hľadáme maximálny súčin.
Pomocný priestor: O(1), pretože používame iba konštantné množstvo dodatočného priestoru na uloženie maximálneho produktu a produktu aktuálneho podpolia.

čiastočná závislosť

Metóda 2 (efektívne: O(n))  
Môžeme to vyriešiť v O(n) tak, že využijeme fakt, že súčin podpola veľkosti k sa dá vypočítať v čase O(1), ak máme k dispozícii súčin predchádzajúceho podpola. 
 

css okraj
curr_product = (prev_product / arr[i-1]) * arr[i + k -1]  
prev_product : Product of subarray of size k beginning
with arr[i-1]
curr_product : Product of subarray of size k beginning
with arr[i]


Týmto spôsobom môžeme vypočítať maximálny súčin čiastkového poľa veľkosti k iba v jednom prechode. Nižšie je uvedená implementácia myšlienky v C++.



C++
// C++ program to find the maximum product of a subarray // of size k. #include    using namespace std; // This function returns maximum product of a subarray // of size k in given array arr[0..n-1]. This function // assumes that k is smaller than or equal to n. int findMaxProduct(int arr[] int n int k) {  // Initialize the MaxProduct to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i=0; i<k; i++)  MaxProduct *= arr[i];  int prev_product = MaxProduct;  // Consider every product beginning with arr[i]  // where i varies from 1 to n-k-1  for (int i=1; i<=n-k; i++)  {  int curr_product = (prev_product/arr[i-1]) *  arr[i+k-1];  MaxProduct = max(MaxProduct curr_product);  prev_product = curr_product;  }  // Return the maximum product found  return MaxProduct; } // Driver code int main() {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = sizeof(arr1)/sizeof(arr1[0]);  cout << findMaxProduct(arr1 n k) << endl;  k = 4;  cout << findMaxProduct(arr1 n k) << endl;  int arr2[] = {2 5 8 1 1 3};  k = 3;  n = sizeof(arr2)/sizeof(arr2[0]);  cout << findMaxProduct(arr2 n k);  return 0; } 
Java
// Java program to find the maximum product of a subarray // of size k import java.io.*; import java.util.*; class GFG  {  // Function returns maximum product of a subarray  // of size k in given array arr[0..n-1]. This function  // assumes that k is smaller than or equal to n.  static int findMaxProduct(int arr[] int n int k)  {  // Initialize the MaxProduct to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i=0; i<k; i++)  MaxProduct *= arr[i];    int prev_product = MaxProduct;    // Consider every product beginning with arr[i]  // where i varies from 1 to n-k-1  for (int i=1; i<=n-k; i++)  {  int curr_product = (prev_product/arr[i-1]) *  arr[i+k-1];  MaxProduct = Math.max(MaxProduct curr_product);  prev_product = curr_product;  }    // Return the maximum product found  return MaxProduct;  }    // driver program  public static void main (String[] args)   {  int arr1[] = {1 5 9 8 2 4 1 8 1 2};  int k = 6;  int n = arr1.length;  System.out.println(findMaxProduct(arr1 n k));    k = 4;  System.out.println(findMaxProduct(arr1 n k));    int arr2[] = {2 5 8 1 1 3};  k = 3;  n = arr2.length;  System.out.println(findMaxProduct(arr2 n k));  } } // This code is contributed by Pramod Kumar 
Python3
# Python 3 program to find the maximum  # product of a subarray of size k. # This function returns maximum product  # of a subarray of size k in given array # arr[0..n-1]. This function assumes  # that k is smaller than or equal to n. def findMaxProduct(arr n k) : # Initialize the MaxProduct to 1  # as all elements in the array  # are positive MaxProduct = 1 for i in range(0 k) : MaxProduct = MaxProduct * arr[i] prev_product = MaxProduct # Consider every product beginning # with arr[i] where i varies from # 1 to n-k-1 for i in range(1 n - k + 1) : curr_product = (prev_product // arr[i-1]) * arr[i+k-1] MaxProduct = max(MaxProduct curr_product) prev_product = curr_product # Return the maximum product found return MaxProduct # Driver code arr1 = [1 5 9 8 2 4 1 8 1 2] k = 6 n = len(arr1) print (findMaxProduct(arr1 n k) ) k = 4 print (findMaxProduct(arr1 n k)) arr2 = [2 5 8 1 1 3] k = 3 n = len(arr2) print(findMaxProduct(arr2 n k)) # This code is contributed by Nikita Tiwari. 
C#
// C# program to find the maximum  // product of a subarray of size k using System; class GFG  {  // Function returns maximum   // product of a subarray of   // size k in given array   // arr[0..n-1]. This function   // assumes that k is smaller   // than or equal to n.  static int findMaxProduct(int []arr   int n int k)  {  // Initialize the MaxProduct   // to 1 as all elements  // in the array are positive  int MaxProduct = 1;  for (int i = 0; i < k; i++)  MaxProduct *= arr[i];  int prev_product = MaxProduct;  // Consider every product beginning   // with arr[i] where i varies from   // 1 to n-k-1  for (int i = 1; i <= n - k; i++)  {  int curr_product = (prev_product /   arr[i - 1]) *   arr[i + k - 1];  MaxProduct = Math.Max(MaxProduct   curr_product);  prev_product = curr_product;  }  // Return the maximum  // product found  return MaxProduct;  }    // Driver Code  public static void Main ()   {  int []arr1 = {1 5 9 8 2   4 1 8 1 2};  int k = 6;  int n = arr1.Length;  Console.WriteLine(findMaxProduct(arr1 n k));  k = 4;  Console.WriteLine(findMaxProduct(arr1 n k));  int []arr2 = {2 5 8 1 1 3};  k = 3;  n = arr2.Length;  Console.WriteLine(findMaxProduct(arr2 n k));  } } // This code is contributed by anuj_67. 
JavaScript
<script>  // JavaScript program to find the maximum   // product of a subarray of size k    // Function returns maximum   // product of a subarray of   // size k in given array   // arr[0..n-1]. This function   // assumes that k is smaller   // than or equal to n.  function findMaxProduct(arr n k)  {  // Initialize the MaxProduct   // to 1 as all elements  // in the array are positive  let MaxProduct = 1;  for (let i = 0; i < k; i++)  MaxProduct *= arr[i];    let prev_product = MaxProduct;    // Consider every product beginning   // with arr[i] where i varies from   // 1 to n-k-1  for (let i = 1; i <= n - k; i++)  {  let curr_product =   (prev_product / arr[i - 1]) * arr[i + k - 1];  MaxProduct = Math.max(MaxProduct curr_product);  prev_product = curr_product;  }    // Return the maximum  // product found  return MaxProduct;  }    let arr1 = [1 5 9 8 2 4 1 8 1 2];  let k = 6;  let n = arr1.length;  document.write(findMaxProduct(arr1 n k) + '
'
); k = 4; document.write(findMaxProduct(arr1 n k) + '
'
); let arr2 = [2 5 8 1 1 3]; k = 3; n = arr2.length; document.write(findMaxProduct(arr2 n k) + '
'
); </script>
PHP
 // PHP program to find the maximum  // product of a subarray of size k. // This function returns maximum  // product of a subarray of size  // k in given array arr[0..n-1]. // This function assumes that k  // is smaller than or equal to n. function findMaxProduct( $arr $n $k) { // Initialize the MaxProduct to // 1 as all elements // in the array are positive $MaxProduct = 1; for($i = 0; $i < $k; $i++) $MaxProduct *= $arr[$i]; $prev_product = $MaxProduct; // Consider every product // beginning with arr[i] // where i varies from 1  // to n-k-1 for($i = 1; $i < $n - $k; $i++) { $curr_product = ($prev_product / $arr[$i - 1]) * $arr[$i + $k - 1]; $MaxProduct = max($MaxProduct $curr_product); $prev_product = $curr_product; } // Return the maximum // product found return $MaxProduct; } // Driver code $arr1 = array(1 5 9 8 2 4 1 8 1 2); $k = 6; $n = count($arr1); echo findMaxProduct($arr1 $n $k)'n' ; $k = 4; echo findMaxProduct($arr1 $n $k)'n'; $arr2 = array(2 5 8 1 1 3); $k = 3; $n = count($arr2); echo findMaxProduct($arr2 $n $k); // This code is contributed by anuj_67. ?> 

Výstup
4608 720 80

Pomocný priestor: O(1) pretože sa nepoužíva žiadny ďalší priestor.
Do tohto článku prispeli Ashutosh Kumar .