Vzhľadom na binárny strom je úlohou nájsť výšku stromu. Výška stromu je počet vrcholov v strome od koreňa po najhlbší uzol.
Poznámka: Výška prázdneho stromu je 0 a výška stromu s jedným uzlom je 1 .

Príklad binárneho stromu
Odporúčaná výška binárneho stromu na cvičenie Vyskúšajte to!Rekurzívne vypočítajte výšku vľavo a správny podstromy uzla a priraďte výšku uzlu ako maximálna výška dvoch detí plus 1 . Podrobnosti nájdete v pseudokóde a programe nižšie.
Ilustrácia:
Zvážte nasledujúci strom:
Príklad stromu
maxDepth(‘1’) = max(maxDepth(‘2’), maxDepth(‘3’)) + 1 = 2 + 1
stiahnite si video z youtube pomocou vlcpretože rekurzívne
maxDepth(‘2‘) = max (maxDepth(‘4‘), maxDepth(‘5‘)) + 1 = 1 + 1 a (keďže výška ‚4‘ aj ‚5‘ je 1)
maxDepth('3') = 1
Pri implementácii nápadu postupujte podľa nasledujúcich krokov:
- Rekurzívne vykonajte hĺbkové vyhľadávanie.
- Ak je strom prázdny, vráťte 0
- V opačnom prípade postupujte nasledovne
- Získajte maximálnu hĺbku ľavého podstromu rekurzívne, t. j. zavolajte maxDepth( strom->ľavý-podstrom)
- Získajte maximálnu hĺbku pravého podstromu rekurzívne, t. j. zavolajte maxDepth( strom->pravý-podstrom)
- Získajte maximálnu maximálnu hĺbku vľavo a správny podstromy a pridať 1 k nemu pre aktuálny uzol.
-
- Vráti maximálnu_hĺbku.
Nižšie je uvedená implementácia vyššie uvedeného prístupu:
C++
// C++ program to find height of tree> #include> using> namespace> std;> /* A binary tree node has data, pointer to left child> and a pointer to right child */> class> node {> public>:> >int> data;> >node* left;> >node* right;> };> /* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> int> maxDepth(node* node)> {> >if> (node == NULL)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node->vľavo);> >int> rDepth = maxDepth(node->vpravo);> >/* use the larger one */> >if> (lDepth>rHĺbka)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> }> /* Helper function that allocates a new node with the> given data and NULL left and right pointers. */> node* newNode(>int> data)> {> >node* Node =>new> node();> >Node->údaje = údaje;> >Node->vľavo = NULL;> >Node->vpravo = NULL;> >return> (Node);> }> // Driver code> int> main()> {> >node* root = newNode(1);> >root->left = newNode(2);> >root->vpravo = newNode(3);> >root->left->left = newNode(4);> >root->left->right = newNode(5);> >cout <<>'Height of tree is '> << maxDepth(root);> >return> 0;> }> // This code is contributed by Amit Srivastav> |
>
>
C
#include> #include> /* A binary tree node has data, pointer to left child> >and a pointer to right child */> struct> node {> >int> data;> >struct> node* left;> >struct> node* right;> };> /* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> int> maxDepth(>struct> node* node)> {> >if> (node == NULL)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node->vľavo);> >int> rDepth = maxDepth(node->vpravo);> >/* use the larger one */> >if> (lDepth>rHĺbka)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> }> /* Helper function that allocates a new node with the> >given data and NULL left and right pointers. */> struct> node* newNode(>int> data)> {> >struct> node* node> >= (>struct> node*)>malloc>(>sizeof>(>struct> node));> >node->údaje = údaje;> >node->vľavo = NULL;> >node->vpravo = NULL;> >return> (node);> }> int> main()> {> >struct> node* root = newNode(1);> >root->left = newNode(2);> >root->vpravo = newNode(3);> >root->left->left = newNode(4);> >root->left->right = newNode(5);> >printf>(>'Height of tree is %d'>, maxDepth(root));> >getchar>();> >return> 0;> }> |
>
>
Java
// Java program to find height of tree> // A binary tree node> class> Node {> >int> data;> >Node left, right;> >Node(>int> item)> >{> >data = item;> >left = right =>null>;> >}> }> class> BinaryTree {> >Node root;> >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >int> maxDepth(Node node)> >{> >if> (node ==>null>)> >return> 0>;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node.left);> >int> rDepth = maxDepth(node.right);> >/* use the larger one */> >if> (lDepth>rHĺbka)> >return> (lDepth +>1>);> >else> >return> (rDepth +>1>);> >}> >}> >/* Driver program to test above functions */> >public> static> void> main(String[] args)> >{> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(>1>);> >tree.root.left =>new> Node(>2>);> >tree.root.right =>new> Node(>3>);> >tree.root.left.left =>new> Node(>4>);> >tree.root.left.right =>new> Node(>5>);> >System.out.println(>'Height of tree is '> >+ tree.maxDepth(tree.root));> >}> }> // This code has been contributed by Amit Srivastav> |
>
>
Python3
# Python3 program to find the maximum depth of tree> # A binary tree node> class> Node:> ># Constructor to create a new node> >def> __init__(>self>, data):> >self>.data>=> data> >self>.left>=> None> >self>.right>=> None> # Compute the 'maxDepth' of a tree -- the number of nodes> # along the longest path from the root node down to the> # farthest leaf node> def> maxDepth(node):> >if> node>is> None>:> >return> 0> >else>:> ># Compute the depth of each subtree> >lDepth>=> maxDepth(node.left)> >rDepth>=> maxDepth(node.right)> ># Use the larger one> >if> (lDepth>rDepth):> >return> lDepth>+>1> >else>:> >return> rDepth>+>1> # Driver program to test above function> root>=> Node(>1>)> root.left>=> Node(>2>)> root.right>=> Node(>3>)> root.left.left>=> Node(>4>)> root.left.right>=> Node(>5>)> print>(>'Height of tree is %d'> %> (maxDepth(root)))> # This code is contributed by Amit Srivastav> |
>
>
C#
// C# program to find height of tree> using> System;> // A binary tree node> public> class> Node {> >public> int> data;> >public> Node left, right;> >public> Node(>int> item)> >{> >data = item;> >left = right =>null>;> >}> }> public> class> BinaryTree {> >Node root;> >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >int> maxDepth(Node node)> >{> >if> (node ==>null>)> >return> 0;> >else> {> >/* compute the depth of each subtree */> >int> lDepth = maxDepth(node.left);> >int> rDepth = maxDepth(node.right);> >/* use the larger one */> >if> (lDepth>rHĺbka)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> >}> >/* Driver code */> >public> static> void> Main(String[] args)> >{> >BinaryTree tree =>new> BinaryTree();> >tree.root =>new> Node(1);> >tree.root.left =>new> Node(2);> >tree.root.right =>new> Node(3);> >tree.root.left.left =>new> Node(4);> >tree.root.left.right =>new> Node(5);> >Console.WriteLine(>'Height of tree is '> >+ tree.maxDepth(tree.root));> >}> }> // This code has been contributed by> // Correction done by Amit Srivastav> |
>
>
Javascript
> // JavaScript program to find height of tree> // A binary tree node> class Node> {> >constructor(item)> >{> >this>.data=item;> >this>.left=>this>.right=>null>;> >}> }> >let root;> > >/* Compute the 'maxDepth' of a tree -- the number of> >nodes along the longest path from the root node> >down to the farthest leaf node.*/> >function> maxDepth(node)> >{> >if> (node ==>null>)> >return> 0;> >else> >{> >/* compute the depth of each subtree */> >let lDepth = maxDepth(node.left);> >let rDepth = maxDepth(node.right);> > >/* use the larger one */> >if> (lDepth>rHĺbka)> >return> (lDepth + 1);> >else> >return> (rDepth + 1);> >}> >}> > >/* Driver program to test above functions */> > >root =>new> Node(1);> >root.left =>new> Node(2);> >root.right =>new> Node(3);> >root.left.left =>new> Node(4);> >root.left.right =>new> Node(5);> > >document.write(>'Height of tree is : '> +> >maxDepth(root));> // This code is contributed by rag2127> //Correction done by Amit Srivastav> > |
>
>
Výkon
Height of tree is 3>
Časová zložitosť: O(N) (Pozrite si príspevok na Prechádzanie stromom pre podrobnosti)
Pomocný priestor: O(N) kvôli rekurzívnemu zásobníku.
Nájdite maximálnu hĺbku alebo výšku stromu pomocou Prechádzanie objednávky úrovne :
Do Prechádzanie objednávky úrovne , pričom pridávate uzly na každej úrovni do Pri implementácii nápadu postupujte podľa nasledujúcich krokov:
- Prechádzajte stromom v poradí úrovne, začínajúc od koreň .
- Inicializujte prázdny front Q , premenná hĺbka a tlačiť koreň , potom zatlačte nulový do Q .
- Spustite chvíľu cyklu, kým Q nie je prázdny.
- Uložte predný prvok z Q a Vysuňte predný prvok.
- Ak je predná časť Q je NULOVÝ potom zvýšiť hĺbka o jeden a ak fronta nie je prázdna, stlačte NULOVÝ do Q .
- V opačnom prípade, ak prvok nie je NULOVÝ potom skontrolujte jeho vľavo a správny deti a ak nie sú NULOVÝ zatlačte ich do Q .
- Návrat hĺbka .
Nižšie je uvedená implementácia vyššie uvedeného prístupu:
podčiarknuť v značkeC++
#include>#include>using>namespace>std;>// A Tree node>struct>Node {>>int>key;>>struct>Node *left, *right;>};>// Utility function to create a new node>Node* newNode(>int>key)>{>>Node* temp =>new>Node;>>temp->kľúč = kľúč;>>temp->vľavo = teplota->vpravo = NULL;>>return>(temp);>}>/*Function to find the height(depth) of the tree*/>int>height(>struct>Node* root)>{>>// Initialising a variable to count the>>// height of tree>>int>depth = 0;>>queue q;>>// Pushing first level element along with NULL>>q.push(root);>>q.push(NULL);>>while>(!q.empty()) {>>Node* temp = q.front();>>q.pop();>>// When NULL encountered, increment the value>>if>(temp == NULL) {>>depth++;>>}>>// If NULL not encountered, keep moving>>if>(temp != NULL) {>>if>(temp->vľavo) {>>q.push(temp->vľavo);>>}>>if>(temp->vpravo) {>>q.push(temp->vpravo);>>}>>}>>// If queue still have elements left,>>// push NULL again to the queue.>>else>if>(!q.empty()) {>>q.push(NULL);>>}>>}>>return>depth;>}>// Driver program>int>main()>{>>// Let us create Binary Tree shown in above example>>Node* root = newNode(1);>>root->left = newNode(2);>>root->vpravo = newNode(3);>>root->left->left = newNode(4);>>root->left->right = newNode(5);>>cout <<>'Height(Depth) of tree is: '><< height(root);>}>>>Java
// Java program for above approach>import>java.util.LinkedList;>import>java.util.Queue;>class>GFG {>>// A tree node structure>>static>class>Node {>>int>key;>>Node left;>>Node right;>>}>>// Utility function to create>>// a new node>>static>Node newNode(>int>key)>>{>>Node temp =>new>Node();>>temp.key = key;>>temp.left = temp.right =>null>;>>return>temp;>>}>>/*Function to find the height(depth) of the tree*/>>public>static>int>height(Node root)>>{>>// Initialising a variable to count the>>// height of tree>>int>depth =>0>;>>Queue q =>new>LinkedList();>>// Pushing first level element along with null>>q.add(root);>>q.add(>null>);>>while>(!q.isEmpty()) {>>Node temp = q.peek();>>q.remove();>>// When null encountered, increment the value>>if>(temp ==>null>) {>>depth++;>>}>>// If null not encountered, keep moving>>if>(temp !=>null>) {>>if>(temp.left !=>null>) {>>q.add(temp.left);>>}>>if>(temp.right !=>null>) {>>q.add(temp.right);>>}>>}>>// If queue still have elements left,>>// push null again to the queue.>>else>if>(!q.isEmpty()) {>>q.add(>null>);>>}>>}>>return>depth;>>}>>// Driver Code>>public>static>void>main(String args[])>>{>>Node root = newNode(>1>);>>root.left = newNode(>2>);>>root.right = newNode(>3>);>>root.left.left = newNode(>4>);>>root.left.right = newNode(>5>);>>System.out.println(>'Height(Depth) of tree is: '>>+ height(root));>>}>}>// This code is contributed by jana_sayantan.>>>Python3
# Python code to implement the approach># A Tree node>class>Node:>>def>__init__(>self>):>>self>.key>=>0>>self>.left,>self>.right>=>None>,>None># Utility function to create a new node>def>newNode(key):>>temp>=>Node()>>temp.key>=>key>>temp.left, temp.right>=>None>,>None>>return>temp># Function to find the height(depth) of the tree>def>height(root):>># Initialising a variable to count the>># height of tree>>depth>=>0>>q>=>[]>># appending first level element along with None>>q.append(root)>>q.append(>None>)>>while>(>len>(q)>>0>):>>temp>=>q[>0>]>>q>=>q[>1>:]>># When None encountered, increment the value>>if>(temp>=>=>None>):>>depth>+>=>1>># If None not encountered, keep moving>>if>(temp !>=>None>):>>if>(temp.left):>>q.append(temp.left)>>if>(temp.right):>>q.append(temp.right)>># If queue still have elements left,>># append None again to the queue.>>elif>(>len>(q)>>0>):>>q.append(>None>)>>return>depth># Driver program># Let us create Binary Tree shown in above example>root>=>newNode(>1>)>root.left>=>newNode(>2>)>root.right>=>newNode(>3>)>root.left.left>=>newNode(>4>)>root.left.right>=>newNode(>5>)>print>(f>'Height(Depth) of tree is: {height(root)}'>)># This code is contributed by shinjanpatra>>>C#
// C# Program to find the Maximum Depth or Height of Binary Tree>using>System;>using>System.Collections.Generic;>// A Tree node>public>class>Node {>>public>int>data;>>public>Node left, right;>>public>Node(>int>item)>>{>>data = item;>>left =>null>;>>right =>null>;>>}>}>public>class>BinaryTree {>>Node root;>>// Function to find the height(depth) of the tree>>int>height()>>{>>// Initialising a variable to count the>>// height of tree>>int>depth = 0;>>Queue q =>new>Queue();>>// Pushing first level element along with NULL>>q.Enqueue(root);>>q.Enqueue(>null>);>>while>(q.Count != 0) {>>Node temp = q.Dequeue();>>// When NULL encountered, increment the value>>if>(temp ==>null>)>>depth++;>>// If NULL not encountered, keep moving>>if>(temp !=>null>) {>>if>(temp.left !=>null>) {>>q.Enqueue(temp.left);>>}>>if>(temp.right !=>null>) {>>q.Enqueue(temp.right);>>}>>}>>// If queue still have elements left,>>// push NULL again to the queue>>else>if>(q.Count != 0) {>>q.Enqueue(>null>);>>}>>}>>return>depth;>>}>>// Driver program>>public>static>void>Main()>>{>>// Let us create Binary Tree shown in above example>>BinaryTree tree =>new>BinaryTree();>>tree.root =>new>Node(1);>>tree.root.left =>new>Node(2);>>tree.root.right =>new>Node(3);>>tree.root.left.left =>new>Node(4);>>tree.root.left.right =>new>Node(5);>>Console.WriteLine(>'Height(Depth) of tree is: '>>+ tree.height());>>}>}>// This code is contributed by Yash Agarwal(yashagarwal2852002)>>>Javascript
>// JavaScript code to implement the approach>// A Tree node>class Node{>>constructor(){>>this>.key = 0>>this>.left =>null>>this>.right =>null>>}>}>// Utility function to create a new node>function>newNode(key){>>let temp =>new>Node()>>temp.key = key>>temp.left =>null>>temp.right =>null>>return>temp>}>// Function to find the height(depth) of the tree>function>height(root){>>// Initialising a variable to count the>>// height of tree>>let depth = 0>>let q = []>>>// pushing first level element along with null>>q.push(root)>>q.push(>null>)>>while>(q.length>0){>>let temp = q.shift()>>>// When null encountered, increment the value>>if>(temp ==>null>)>>depth += 1>>>// If null not encountered, keep moving>>if>(temp !=>null>){>>if>(temp.left)>>q.push(temp.left)>>>if>(temp.right)>>q.push(temp.right)>>}>>>// If queue still have elements left,>>// push null again to the queue.>>else>if>(q.length>0)>>q.push(>null>)>>}>>return>depth>}>// Driver program>// Let us create Binary Tree shown in above example>let root = newNode(1)>root.left = newNode(2)>root.right = newNode(3)>root.left.left = newNode(4)>root.left.right = newNode(5)>document.write(`Height(Depth) of tree is: ${height(root)}`,>''>)>// This code is contributed by shinjanpatra>>>>
VýkonHeight(Depth) of tree is: 3>Časová zložitosť: O(N)
Pomocný priestor: O(N)Ďalšia metóda na zistenie výšky pomocou Prechádzanie objednávky úrovne :
C++
// C++ program for above approach>#include>using>namespace>std;>// A Tree node>struct>Node {>>int>key;>>struct>Node *left, *right;>};>// Utility function to create a new node>Node* newNode(>int>key)>{>>Node* temp =>new>Node;>>temp->kľúč = kľúč;>>temp->vľavo = teplota->vpravo = NULL;>>return>(temp);>}>/*Function to find the height(depth) of the tree*/>int>height(Node* root)>{>>// Initialising a variable to count the>>// height of tree>>queue q;>>q.push(root);>>int>height = 0;>>while>(!q.empty()) {>>int>size = q.size();>>for>(>int>i = 0; i Node* temp = q.front(); q.pop(); if (temp->vľavo != NULL) { q.push(temp->left); } if (temp->vpravo != NULL) { q.push(temp->vpravo); } } vyska++; } výška návratu; } // Program ovládača int main() { // Vytvorme binárny strom zobrazený v príklade vyššie Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); cout<< 'Height(Depth) of tree is: ' << height(root); } // This code is contributed by Abhijeet Kumar(abhijeet19403)>>>Java
// Java program for above approach>import>java.util.LinkedList;>import>java.util.Queue;>class>GFG {>>// A tree node structure>>static>class>Node {>>int>key;>>Node left;>>Node right;>>}>>// Utility function to create>>// a new node>>static>Node newNode(>int>key)>>{>>Node temp =>new>Node();>>temp.key = key;>>temp.left = temp.right =>null>;>>return>temp;>>}>>/*Function to find the height(depth) of the tree*/>>public>static>int>height(Node root)>>{>>// Initialising a variable to count the>>// height of tree>>Queue q =>new>LinkedList();>>q.add(root);>>int>height =>0>;>>while>(!q.isEmpty()) {>>int>size = q.size();>>for>(>int>i =>0>; i Node temp = q.poll(); if (temp.left != null) { q.add(temp.left); } if (temp.right != null) { q.add(temp.right); } } height++; } return height; } // Driver Code public static void main(String args[]) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); System.out.println('Height(Depth) of tree is: ' + height(root)); } }>>>Python3
# Python3 program to find the height of a tree>># A binary tree node>class>Node:>>># Constructor to create a new node>>def>__init__(>self>, data):>>self>.key>=>data>>self>.left>=>None>>self>.right>=>None>># Function to find height of tree>def>height(root):>># Base Case>>if>root>is>None>:>>return>0>>># Create an empty queue for level order traversal>>q>=>[]>>># Enqueue Root and initialize height>>q.append(root)>>height>=>0>>># Loop while queue is not empty>>while>q:>>># nodeCount (queue size) indicates number of nodes>># at current level>>nodeCount>=>len>(q)>>># Dequeue all nodes of current level and Enqueue all>># nodes of next level>>while>nodeCount>>0>:>>node>=>q.pop(>0>)>>if>node.left>is>not>None>:>>q.append(node.left)>>if>node.right>is>not>None>:>>q.append(node.right)>>nodeCount>->=>1>>height>+>=>1>>>return>height>># Driver Code>root>=>Node(>1>)>root.left>=>Node(>2>)>root.right>=>Node(>3>)>root.left.left>=>Node(>4>)>root.left.right>=>Node(>5>)>>print>(>'Height(Depth) of tree is'>, height(root))>>>C#
using>System;>using>System.Collections.Generic;>class>GFG {>>// A Tree node>>class>Node {>>public>int>key;>>public>Node left, right;>>public>Node(>int>key)>>{>>this>.key=key;>>this>.left=>this>.right=>null>;>>}>>}>>// Utility function to create a new node>>/*Node newNode(int key)>>{>>Node* temp = new Node;>>temp.key = key;>>temp.left = temp.right = NULL;>>return (temp);>>}*/>>/*Function to find the height(depth) of the tree*/>>static>int>height(Node root)>>{>>// Initialising a variable to count the>>// height of tree>>Queue q=>new>Queue();>>q.Enqueue(root);>>int>height = 0;>>while>(q.Count>0) {>>int>size = q.Count;>>for>(>int>i = 0; i Node temp = q.Peek(); q.Dequeue(); if (temp.left != null) { q.Enqueue(temp.left); } if (temp.right != null) { q.Enqueue(temp.right); } } height++; } return height; } // Driver program public static void Main() { // Let us create Binary Tree shown in above example Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); Console.Write('Height(Depth) of tree is: ' + height(root)); } } // This code is contributed by poojaagarwal2.>>>Javascript
// JavaScript program for above approach>// a tree node>class Node{>>constructor(key){>>this>.key = key;>>this>.left =>this>.right =>null>;>>}>}>// utility function to create a new node>function>newNode(key){>>return>new>Node(key);>}>// function to find the height of the tree>function>height(root){>>// initialising a variable to count the>>// height of tree>>let q = [];>>q.push(root);>>let height = 0;>>while>(q.length>0){>>let size = q.length;>>for>(let i = 0; i let temp = q.shift(); if(temp.left != null){ q.push(temp.left); } if(temp.right != null){ q.push(temp.right); } } height++; } return height; } // driver code let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); document.write('Height(Depth) of tree is: ' + height(root)); // this code is contributed by Kirti Agarwal(kirtiagarwal23121999)>>>
VýkonHeight(Depth) of tree is: 3>Časová zložitosť: O(N)
Pomocný priestor: O(N)