logo

Skontrolujte, či je číslo Palindróm

Ak je dané kladné celé číslo, napíšte funkciu, ktorá vráti hodnotu true, ak je zadané číslo palindróm, inak hodnotu false. Napríklad 12321 je palindróm, ale 1451 nie je palindróm.



Odporúčaná prax Súčet číslic je pallindrome alebo neskúsiť!

Metóda 1:

Nech je dané číslo na jeden . Jednoduchý spôsob riešenia tohto problému je prvý obrátené číslice na jeden , potom porovnajte opak na jeden s na jeden . Ak sú obe rovnaké, vráti hodnotu true, inak false.

Nasleduje zaujímavá metóda inšpirovaná metódou č. 2 toto príspevok. Cieľom je vytvoriť kópiu na jeden a rekurzívne odovzdať kópiu odkazom a prejsť na jeden podľa hodnoty. V rekurzívnych hovoroch rozdeľte na jeden o 10 pri pohybe nadol v strome rekurzie. Pri pohybe nahor v strome rekurzie vydeľte kópiu 10. Keď sa stretnú vo funkcii, pre ktorú sú ukončené všetky podriadené volania, posledná číslica na jeden bude itá číslica od začiatku a posledná číslica kópie bude itá číslica od konca.



C++






// A recursive C++ program to check> // whether a given number> // is palindrome or not> #include> using> namespace> std;> > // A function that returns true only> // if num contains one> // digit> int> oneDigit(>int> num)> {> > >// Comparison operation is faster> >// than division> >// operation. So using following> >// instead of 'return num> >// / 10 == 0;'> >return> (num>= 0 && č<10);> }> > // A recursive function to find> // out whether num is> // palindrome or not. Initially, dupNum> // contains address of> // a copy of num.> bool> isPalUtil(>int> num,>int>* dupNum)> {> > >// Base case (needed for recursion> >// termination): This> >// statement mainly compares the> >// first digit with the> >// last digit> >if> (oneDigit(num))> >return> (num == (*dupNum) % 10);> > >// This is the key line in this> >// method. Note that all> >// recursive calls have a separate> >// copy of num, but they> >// all share same copy of *dupNum.> >// We divide num while> >// moving up the recursion tree> >if> (!isPalUtil(num / 10, dupNum))> >return> false>;> > >// The following statements are> >// executed when we move up> >// the recursion call tree> >*dupNum /= 10;> > >// At this point, if num%10 contains> >// i'th digit from> >// beginning, then (*dupNum)%10> >// contains i'th digit> >// from end> >return> (num % 10 == (*dupNum) % 10);> }> > // The main function that uses> // recursive function> // isPalUtil() to find out whether> // num is palindrome or not> int> isPal(>int> num)> {> > >// Check if num is negative,> >// make it positive> >if> (num <0)> >num = -num;> > >// Create a separate copy of num,> >// so that modifications> >// made to address dupNum don't> >// change the input number.> >// *dupNum = num> >int>* dupNum =>new> int>(num);> > >return> isPalUtil(num, dupNum);> }> > // Driver program to test> // above functions> int> main()> {> >int> n = 12321;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 12;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 88;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 8999;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'>;> >return> 0;> }> > // this code is contributed by shivanisinghss2110>

>

>

C




#include> #include> > // A function that returns true only> // if num contains one digit> int> oneDigit(>int> num)> {> >// Comparison operation is faster> >// than division operation.> >// So using the following instead of 'return num / 10 == 0;'> >return> (num>= 0 && č<10);> }> > // A recursive function to find out whether> // num is palindrome or not.> // Initially, dupNum contains the address of a copy of num.> bool> isPalUtil(>int> num,>int>* dupNum)> {> >// Base case (needed for recursion termination):> >// This statement mainly compares the first digit with the last digit.> >if> (oneDigit(num))> >return> (num == (*dupNum) % 10);> > >// This is the key line in this method.> >// Note that all recursive calls have a separate copy of num,> >// but they all share the same copy of *dupNum.> >// We divide num while moving up the recursion tree.> >if> (!isPalUtil(num / 10, dupNum))> >return> false>;> > >// The following statements are executed when we move up the recursion call tree.> >*dupNum /= 10;> > >// At this point, if num % 10 contains the i'th digit from the beginning,> >// then (*dupNum) % 10 contains the i'th digit from the end.> >return> (num % 10 == (*dupNum) % 10);> }> > // The main function that uses the recursive function> // isPalUtil() to find out whether num is palindrome or not.> bool> isPal(>int> num)> {> >// Check if num is negative, make it positive.> >if> (num <0)> >num = -num;> > >// Create a separate copy of num, so that modifications> >// made to the address dupNum don't change the input number.> >int> dupNum = num;> > >return> isPalUtil(num, &dupNum);> }> > // Driver program to test above functions> int> main()> {> >int> n = 12321;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 12;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 88;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 8999;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >return> 0;> }>

>

>

Java




// A recursive Java program to> // check whether a given number> // is palindrome or not> import> java.io.*;> import> java.util.*;> > public> class> CheckPalindromeNumberRecursion {> > >// A function that returns true> >// only if num contains one digit> >public> static> int> oneDigit(>int> num) {> > >if> ((num>=>0>) && (num <>10>))> >return> 1>;> >else> >return> 0>;> >}> > >public> static> int> isPalUtil> >(>int> num,>int> dupNum)>throws> Exception {> > >// base condition to return once we> >// move past first digit> >if> (num ==>0>) {> >return> dupNum;> >}>else> {> >dupNum = isPalUtil(num />10>, dupNum);> >}> > >// Check for equality of first digit of> >// num and dupNum> >if> (num %>10> == dupNum %>10>) {> >// if first digit values of num and> >// dupNum are equal divide dupNum> >// value by 10 to keep moving in sync> >// with num.> >return> dupNum />10>;> >}>else> {> >// At position values are not> >// matching throw exception and exit.> >// no need to proceed further.> >throw> new> Exception();> >}> > >}> > >public> static> int> isPal(>int> num)> >throws> Exception {> > >if> (num <>0>)> >num = (-num);> > >int> dupNum = (num);> > >return> isPalUtil(num, dupNum);> >}> > >public> static> void> main(String args[]) {> > >int> n =>12421>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> >n =>1231>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>12>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>88>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>8999>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> >}> }> > // This code is contributed> // by Nasir J>

>

>

Python3




# A recursive Python3 program to check> # whether a given number is palindrome or not> > # A function that returns true> # only if num contains one digit> def> oneDigit(num):> > ># comparison operation is faster> ># than division operation. So> ># using following instead of> ># 'return num / 10 == 0;'> >return> ((num>>=> 0>)>and> >(num <>10>))> > # A recursive function to find> # out whether num is palindrome> # or not. Initially, dupNum> # contains address of a copy of num.> def> isPalUtil(num, dupNum):> > ># Base case (needed for recursion> ># termination): This statement> ># mainly compares the first digit> ># with the last digit> >if> oneDigit(num):> >return> (num>=>=> (dupNum[>0>])>%> 10>)> > ># This is the key line in this> ># method. Note that all recursive> ># calls have a separate copy of> ># num, but they all share same> ># copy of *dupNum. We divide num> ># while moving up the recursion tree> >if> not> isPalUtil(num>/>/>10>, dupNum):> >return> False> > ># The following statements are> ># executed when we move up the> ># recursion call tree> >dupNum[>0>]>=> dupNum[>0>]>/>/>10> > ># At this point, if num%10> ># contains i'th digit from> ># beginning, then (*dupNum)%10> ># contains i'th digit from end> >return> (num>%> 10> =>=> (dupNum[>0>])>%> 10>)> > # The main function that uses> # recursive function isPalUtil()> # to find out whether num is> # palindrome or not> def> isPal(num):> ># If num is negative,> ># make it positive> >if> (num <>0>):> >num>=> (>->num)> > ># Create a separate copy of> ># num, so that modifications> ># made to address dupNum> ># don't change the input number.> >dupNum>=> [num]># *dupNum = num> > >return> isPalUtil(num, dupNum)> > # Driver Code> n>=> 12321> if> isPal(n):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 12> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 88> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 8999> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > # This code is contributed by mits>

>

>

C#




// A recursive C# program to> // check whether a given number> // is palindrome or not> using> System;> > class> GFG> {> > // A function that returns true> // only if num contains one digit> public> static> int> oneDigit(>int> num)> {> >// comparison operation is> >// faster than division> >// operation. So using> >// following instead of> >// 'return num / 10 == 0;'> >if>((num>= 0) &&(č<10))> >return> 1;> >else> >return> 0;> }> > // A recursive function to> // find out whether num is> // palindrome or not.> // Initially, dupNum contains> // address of a copy of num.> public> static> int> isPalUtil(>int> num,> >int> dupNum)> {> >// Base case (needed for recursion> >// termination): This statement> >// mainly compares the first digit> >// with the last digit> >if> (oneDigit(num) == 1)> >if>(num == (dupNum) % 10)> >return> 1;> >else> >return> 0;> > >// This is the key line in> >// this method. Note that> >// all recursive calls have> >// a separate copy of num,> >// but they all share same> >// copy of *dupNum. We divide> >// num while moving up the> >// recursion tree> >if> (isPalUtil((>int>)(num / 10), dupNum) == 0)> >return> -1;> > >// The following statements> >// are executed when we move> >// up the recursion call tree> >dupNum = (>int>)(dupNum / 10);> > >// At this point, if num%10> >// contains i'th digit from> >// beginning, then (*dupNum)%10> >// contains i'th digit from end> >if>(num % 10 == (dupNum) % 10)> >return> 1;> >else> >return> 0;> }> > // The main function that uses> // recursive function isPalUtil()> // to find out whether num is> // palindrome or not> public> static> int> isPal(>int> num)> {> >// If num is negative,> >// make it positive> >if> (num <0)> >num = (-num);> > >// Create a separate copy> >// of num, so that modifications> >// made to address dupNum> >// don't change the input number.> >int> dupNum = (num);>// *dupNum = num> > >return> isPalUtil(num, dupNum);> }> > // Driver Code> public> static> void> Main()> {> int> n = 12321;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 12;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 88;> if>(isPal(n) == 1)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 8999;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> }> }> > // This code is contributed by mits>

>

java bublinové triedenie

>

Javascript




> // A recursive javascript program to> // check whether a given number> // is palindrome or not> > >// A function that returns true> >// only if num contains one digit> >function> oneDigit(num) {> > >if> ((num>= 0) && (č<10))> >return> 1;> >else> >return> 0;> >}> > >function> isPalUtil> >(num , dupNum) {> > >// base condition to return once we> >// move past first digit> >if> (num == 0) {> >return> dupNum;> >}>else> {> >dupNum = isPalUtil(parseInt(num / 10), dupNum);> >}> > >// Check for equality of first digit of> >// num and dupNum> >if> (num % 10 == dupNum % 10) {> >// if first digit values of num and> >// dupNum are equal divide dupNum> >// value by 10 to keep moving in sync> >// with num.> >return> parseInt(dupNum / 10);> >}>else> {> >// At position values are not> >// matching throw exception and exit.> >// no need to proceed further.> >throw> e;> >}> > >}> > >function> isPal(num)> >{> > >if> (num <0)> >num = (-num);> > >var> dupNum = (num);> > >return> isPalUtil(num, dupNum);> >}> > > > >var> n = 1242;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> >n = 1231;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 12;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 88;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 8999;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > // This code is contributed by Amit Katiyar> >

>

>

PHP




// A recursive PHP program to // check whether a given number // is palindrome or not // A function that returns true // only if num contains one digit function oneDigit($num) { // comparison operation is faster // than division operation. So // using following instead of // 'return num / 10 == 0;' return (($num>= 0) && ($num<10)); } // A recursive function to find // out whether num is palindrome // or not. Initially, dupNum // contains address of a copy of num. function isPalUtil($num, $dupNum) { // Base case (needed for recursion // termination): This statement // mainly compares the first digit // with the last digit if (oneDigit($num)) return ($num == ($dupNum) % 10); // This is the key line in this // method. Note that all recursive // calls have a separate copy of // num, but they all share same // copy of *dupNum. We divide num // while moving up the recursion tree if (!isPalUtil((int)($num / 10), $dupNum)) return -1; // The following statements are // executed when we move up the // recursion call tree $dupNum = (int)($dupNum / 10); // At this point, if num%10 // contains i'th digit from // beginning, then (*dupNum)%10 // contains i'th digit from end return ($num % 10 == ($dupNum) % 10); } // The main function that uses // recursive function isPalUtil() // to find out whether num is // palindrome or not function isPal($num) { // If num is negative, // make it positive if ($num <0) $num = (-$num); // Create a separate copy of // num, so that modifications // made to address dupNum // don't change the input number. $dupNum = ($num); // *dupNum = num return isPalUtil($num, $dupNum); } // Driver Code $n = 12321; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; $n = 12; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; $n = 88; if(isPal($n) == 1) echo 'Yes '; else echo 'No '; $n = 8999; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; // This code is contributed by m_kit ?>>

>

>

Výkon

Yes No Yes No>

Časová zložitosť: O (log n)
Pomocný priestor: O (log n)

Ak chcete skontrolovať, či je číslo palindróm alebo nie, bez použitia medzery navyše
Metóda 2: Použitie metódy string().

abstraktné metódy
  • Keď počet číslic tohto čísla presiahne 1018, nemôžeme toto číslo považovať za celé číslo, pretože rozsah long long int nevyhovuje danému číslu.
  • Takže vezmite vstup ako reťazec, Spustite cyklus od začiatku po dĺžku/2 a skontrolujte prvý znak (číselný) po posledný znak reťazca a predposledný, atď.... Ak sa nejaký znak nezhoduje, reťazec nebol by to palindróm.

Nižšie je uvedená implementácia vyššie uvedeného prístupu

C++14




// C++ implementation of the above approach> #include> using> namespace> std;> > // Function to check palindrome> int> checkPalindrome(string str)> {> >// Calculating string length> >int> len = str.length();> > >// Traversing through the string> >// upto half its length> >for> (>int> i = 0; i // Comparing i th character // from starting and len-i // th character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then it is // palindrome return true; } // Driver Code int main() { // taking number as string string st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) cout << 'Yes'; else cout << 'No'; return 0; } // this code is written by vikkycirus>

>

>

Java




// Java implementation of the above approach> import> java.io.*;> > class> GFG{> > // Function to check palindrome> static> boolean> checkPalindrome(String str)> {> > >// Calculating string length> >int> len = str.length();> > >// Traversing through the string> >// upto half its length> >for>(>int> i =>0>; i 2; i++) { // Comparing i th character // from starting and len-i // th character from end if (str.charAt(i) != str.charAt(len - i - 1)) return false; } // If the above loop doesn't return then // it is palindrome return true; } // Driver Code public static void main(String[] args) { // Taking number as string String st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) System.out.print('Yes'); else System.out.print('No'); } } // This code is contributed by subhammahato348>

>

>

Python3




# Python3 implementation of the above approach> > # function to check palindrome> def> checkPalindrome(>str>):> > ># Run loop from 0 to len/2> >for> i>in> range>(>0>,>len>(>str>)>/>/>2>):> >if> str>[i] !>=> str>[>len>(>str>)>->i>->1>]:> >return> False> > ># If the above loop doesn't> >#return then it is palindrome> >return> True> > > # Driver code> st>=> '112233445566778899000000998877665544332211'> if>(checkPalindrome(st)>=>=> True>):> >print>(>'it is a palindrome'>)> else>:> >print>(>'It is not a palindrome'>)>

>

>

C#




// C# implementation of the above approach> using> System;> > class> GFG{> > // Function to check palindrome> static> bool> checkPalindrome(>string> str)> {> > >// Calculating string length> >int> len = str.Length;> > >// Traversing through the string> >// upto half its length> >for>(>int> i = 0; i { // Comparing i th character // from starting and len-i // th character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then // it is palindrome return true; } // Driver Code public static void Main() { // Taking number as string string st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) Console.Write('Yes'); else Console.Write('No'); } } // This code is contributed by subhammahato348>

>

>

Javascript




> > // Javascript implementation of the above approach> > // Function to check palindrome> function> checkPalindrome(str)> {> >// Calculating string length> >var> len = str.length;> > >// Traversing through the string> >// upto half its length> >for> (>var> i = 0; i // Comparing ith character // from starting and len-ith // character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then it is // palindrome return true; } // Driver Code // taking number as string let st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) document.write('Yes'); else document.write('No'); // This code is contributed by Mayank Tyagi>

>

>

Výkon

Yes>

Časová zložitosť: O(|str|)
Pomocný priestor : O(1)

Metóda 3:

Tu je najjednoduchší spôsob, ako skontrolovať, či je číslo Palindróm alebo nie. Tento prístup je možné použiť, keď je počet číslic v danom čísle menší ako 10^18, pretože ak počet číslic tohto čísla presiahne 10^18, nemôžeme toto číslo považovať za celé číslo, pretože rozsah long long int nevyhovuje danému číslu.

Aby sme skontrolovali, či dané číslo je palindróm alebo nie, jednoducho prehodíme číslice daného čísla a skontrolujeme, či sa rub tohto čísla rovná pôvodnému číslu alebo nie. Ak sa opak čísla rovná tomuto číslu, číslo bude palindróm, inak to nebude palindróm.

C++




// C++ program to check if a number is Palindrome> #include> using> namespace> std;> // Function to check Palindrome> bool> checkPalindrome(>int> n)> {> >int> reverse = 0;> >int> temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = temp / 10;> >}> >return> (reverse> >== n);>// if it is true then it will return 1;> >// else if false it will return 0;> }> int> main()> {> >int> n = 7007;> >if> (checkPalindrome(n) == 1) {> >cout <<>'Yes '>;> >}> >else> {> >cout <<>'No '>;> >}> >return> 0;> }> // This code is contributed by Suruchi Kumari>

>

>

Java




/*package whatever //do not write package name here */> > import> java.io.*;> > class> GFG {> >// Java program to check if a number is Palindrome> > >// Function to check Palindrome> >static> boolean> checkPalindrome(>int> n)> >{> >int> reverse =>0>;> >int> temp = n;> >while> (temp !=>0>) {> >reverse = (reverse *>10>) + (temp %>10>);> >temp = temp />10>;> >}> >return> (reverse == n);>// if it is true then it will return 1;> >// else if false it will return 0;> >}> > >// Driver Code> >public> static> void> main(String args[])> >{> >int> n =>7007>;> >if> (checkPalindrome(n) ==>true>) {> >System.out.println(>'Yes'>);> >}> >else> {> >System.out.println(>'No'>);> >}> >}> }> > // This code is contributed by shinjanpatra>

mysql vytvoriť používateľa

>

>

Python3




# Python3 program to check if a number is Palindrome> > # Function to check Palindrome> def> checkPalindrome(n):> > >reverse>=> 0> >temp>=> n> >while> (temp !>=> 0>):> >reverse>=> (reverse>*> 10>)>+> (temp>%> 10>)> >temp>=> temp>/>/> 10> > >return> (reverse>=>=> n)># if it is true then it will return 1;> ># else if false it will return 0;> > # driver code> n>=> 7007> if> (checkPalindrome(n)>=>=> 1>):> >print>(>'Yes'>)> > else>:> >print>(>'No'>)> > # This code is contributed by shinjanpatra>

>

>

C#




// C# program to check if a number is Palindrome> > using> System;> > class> GFG {> > >// Function to check Palindrome> >static> bool> checkPalindrome(>int> n)> >{> >int> reverse = 0;> >int> temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = temp / 10;> >}> >return> (> >reverse> >== n);>// if it is true then it will return 1;> >// else if false it will return 0;> >}> > >// Driver Code> >public> static> void> Main(>string>[] args)> >{> >int> n = 7007;> >if> (checkPalindrome(n) ==>true>) {> >Console.WriteLine(>'Yes'>);> >}> >else> {> >Console.WriteLine(>'No'>);> >}> >}> }> > // This code is contributed by phasing17>

>

>

Javascript




> > // JavaScript program to check if a number is Palindrome> > // Function to check Palindrome> function> checkPalindrome(n)> {> >let reverse = 0;> >let temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = Math.floor(temp / 10);> >}> >return> (reverse == n);>// if it is true then it will return 1;> >// else if false it will return 0;> }> > // driver code> > let n = 7007;> if> (checkPalindrome(n) == 1) {> >document.write(>'Yes'>,>''>);> }> else> {> >document.write(>'No'>,>''>);> }> > > // This code is contributed by shinjanpatra> > >

>

>

Výkon

Yes>

Časová zložitosť: O(log10(n)) alebo O (počet číslic v danom čísle)
Pomocný priestor : O(1) alebo konštanta

Tento článok zostavujeAshish Barnwal.