V tejto časti napíšeme programy Java na určenie sily čísla. Ak chcete získať mocninu čísla, vynásobte číslo jeho exponentom.
Príklad:
Predpokladajme, že základ je 5 a exponent je 4. Ak chcete získať mocninu čísla, vynásobte ho štyrikrát, t.j. (5 * 5 * 5 * 5 = 625).
Ako určiť silu čísla?
- Základ a exponent by sa mali prečítať alebo inicializovať.
- Vezmite ďalší premenlivý výkon a nastavte ho na 1, aby ste uložili výsledok.
- Vynásobte základ výkonom a výsledok uložte do výkonu pomocou cyklu for alebo while.
- Opakujte krok 3, kým sa exponent nerovná nule.
- Vytlačte výstup.
Metódy na nájdenie mocniny čísla
Existuje niekoľko spôsobov, ako určiť silu čísla:
herec ranbir kapoor vek
- Používanie Java pre slučku
- Používanie jazyka Java počas slučky
- Použitie rekurzie
- Použitie metódy Math.pow().
- Použitie bitovej manipulácie
1. Používanie Java pre slučku
Slučku for možno použiť na výpočet mocniny čísla opakovaným vynásobením základu.
PowerOfNumber1.java
public class PowerOfNumber1 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; for (int i = 0; i <exponent; i++) { result *="base;" } system.out.println(base + ' raised to the power of exponent is result); < pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>2. Using Java while Loop</h3> <p>A while loop may similarly be used to achieve the same result by multiplying the base many times.</p> <p> <strong>PowerOfNumber2.java</strong> </p> <pre> public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent > 0) { result *= base; exponent--; } System.out.println(base + ' raised to the power of ' + power + ' is ' + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>3. Using Recursion:</h3> <p>Recursion is the process of breaking down an issue into smaller sub-problems. Here's an example of how recursion may be used to compute a number's power.</p> <p> <strong>PowerOfNumber3.java</strong> </p> <pre> public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } } </pre> <p> <strong>Output:</strong> </p> <pre> 2 raised to the power of 3 is 8 </pre> <h3>4. Using Math.pow() Method</h3> <p>The java.lang package's Math.pow() function computes the power of an integer directly.</p> <p> <strong>PowerOfNumber4.java</strong> </p> <pre> public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 3.0 is 8.0 </pre> <h3>Handling Negative Exponents:</h3> <p>When dealing with negative exponents, the idea of reciprocal powers might be useful. For instance, x^(-n) equals 1/x^n. Here's an example of dealing with negative exponents.</p> <p> <strong>PowerOfNumber5.java</strong> </p> <pre> public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { if (exponent >= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;></pre></exponent;>
2. Používanie jazyka Java počas slučky
Slučka while sa môže podobne použiť na dosiahnutie rovnakého výsledku mnohonásobným vynásobením základu.
PowerOfNumber2.java
public class PowerOfNumber2 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = 1; int power=3; while (exponent > 0) { result *= base; exponent--; } System.out.println(base + ' raised to the power of ' + power + ' is ' + result); } }
Výkon:
2 raised to the power of 3 is 8
3. Použitie rekurzie:
Rekurzia je proces rozdelenia problému na menšie čiastkové problémy. Tu je príklad toho, ako možno použiť rekurziu na výpočet sily čísla.
java hashset
PowerOfNumber3.java
public class PowerOfNumber3 { public static void main(String[] args) { int base = 2; int exponent = 3; int result = power(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } public static int power(int base, int exponent) { if (exponent == 0) { return 1; } else { return base * power(base, exponent - 1); } } }
Výkon:
2 raised to the power of 3 is 8
4. Použitie metódy Math.pow().
Funkcia Math.pow() balíka java.lang počíta priamo silu celého čísla.
PowerOfNumber4.java
public class PowerOfNumber4 { public static void main(String[] args) { double base = 2.0; double exponent = 3.0; double result = Math.pow(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is ' + result); } }
Výkon:
0,2 ako zlomok
2.0 raised to the power of 3.0 is 8.0
Spracovanie negatívnych exponentov:
Pri riešení negatívnych exponentov môže byť užitočná myšlienka recipročných právomocí. Napríklad x^(-n) sa rovná 1/x^n. Tu je príklad riešenia negatívnych exponentov.
dlho do int java
PowerOfNumber5.java
public class PowerOfNumber5 { public static void main(String[] args) { double base = 2.0; int exponent = -3; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { if (exponent >= 0) { return calculatePositivePower(base, exponent); } else { return 1.0 / calculatePositivePower(base, -exponent); } } static double calculatePositivePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of -3 is: 0.125 </pre> <h3>Optimizing for Integer Exponents:</h3> <p>When dealing with integer exponents, you may optimize the calculation by iterating only as many times as the exponent value. It decreases the number of unneeded multiplications.</p> <p> <strong>PowerOfNumber6.java</strong> </p> <pre> public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;></pre></exponent;>
Optimalizácia pre celočíselné exponenty:
Pri práci s celočíselnými exponentmi môžete optimalizovať výpočet iterovaním len toľkokrát, koľkokrát je hodnota exponentu. Znižuje počet nepotrebných násobení.
PowerOfNumber6.java
public class PowerOfNumber6 { public static void main(String[] args) { double base = 2.0; int exponent = 4; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; for (int i = 0; i <exponent; i++) { result *="base;" } return result; < pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 4 is: 16.0 </pre> <h3>5. Using Bit Manipulation to Calculate Binary Exponents:</h3> <p>Bit manipulation can be used to better improve integer exponents. To do fewer multiplications, an exponent's binary representation might be used.</p> <p> <strong>PowerOfNumber7.java</strong> </p> <pre> public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } } </pre> <p> <strong>Output:</strong> </p> <pre> 2.0 raised to the power of 5 is: 32.0 </pre> <hr></exponent;>
5. Použitie bitovej manipulácie na výpočet binárnych exponentov:
Bitovú manipuláciu možno použiť na lepšie zlepšenie celočíselných exponentov. Ak chcete urobiť menej násobení, môže sa použiť binárna reprezentácia exponentu.
PowerOfNumber7.java
public class PowerOfNumber7 { public static void main(String[] args) { double base = 2.0; int exponent = 5; double result = calculatePower(base, exponent); System.out.println(base + ' raised to the power of ' + exponent + ' is: ' + result); } static double calculatePower(double base, int exponent) { double result = 1.0; while (exponent > 0) { if ((exponent & 1) == 1) { result *= base; } base *= base; exponent >>= 1; } return result; } }
Výkon:
2.0 raised to the power of 5 is: 32.0