Vzhľadom na zoradené pole n rovnomerne rozdelených hodnôt arr[] napíšte funkciu na vyhľadanie konkrétneho prvku x v poli.
Lineárne vyhľadávanie nájde prvok v čase O(n). Prejsť na vyhľadávanie trvá O(n) čas a Binárne vyhľadávanie trvá O(log n) čas.
Interpolačné vyhľadávanie je oproti Binárne vyhľadávanie pre prípady, keď sú hodnoty v zoradenom poli rovnomerne rozdelené. Interpolácia vytvára nové dátové body v rozsahu diskrétnej množiny známych dátových bodov. Binárne vyhľadávanie vždy prejde na stredný prvok na kontrolu. Na druhej strane interpolačné vyhľadávanie môže ísť do rôznych miest podľa hodnoty vyhľadávaného kľúča. Napríklad, ak je hodnota kľúča bližšia k poslednému prvku, vyhľadávanie interpoláciou pravdepodobne spustí vyhľadávanie smerom ku koncovej strane.
Na nájdenie pozície, ktorá sa má hľadať, používa nasledujúci vzorec.
// Myšlienkou vzorca je vrátiť vyššiu hodnotu poz
// keď je prvok, ktorý sa má vyhľadať, bližšie k arr[hi]. A
// menšia hodnota, keď je bližšie k arr[lo]
arr[] ==> Pole, kde je potrebné hľadať prvky
x ==> Prvok, ktorý sa má vyhľadať
lo ==> Počiatočný index v arr[]
ahoj ==> Koncový index v arr[]
rolovacie koliesko nefungujepo = +
Existuje mnoho rôznych metód interpolácie a jedna z nich je známa ako lineárna interpolácia. Lineárna interpolácia používa dva dátové body, ktoré predpokladáme ako (x1y1) a (x2y2) a vzorec je: v bode (xy).
Tento algoritmus funguje tak, že hľadáme slovo v slovníku. Interpolačný vyhľadávací algoritmus zlepšuje binárny vyhľadávací algoritmus. Vzorec na nájdenie hodnoty je: K = >K je konštanta, ktorá sa používa na zúženie priestoru vyhľadávania. V prípade binárneho vyhľadávania je hodnota tejto konštanty: K=(nízka+vysoká)/2.
Vzorec pre poz. možno odvodiť nasledovne.
0,04 ako zlomok
Let's assume that the elements of the array are linearly distributed.
General equation of line : y = m*x + c.
y is the value in the array and x is its index.
Now putting value of lohi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)
m = (arr[hi] - arr[lo] )/ (hi - lo)
subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])
Algoritmus
Zvyšok interpolačného algoritmu je rovnaký okrem vyššie uvedenej logiky rozdelenia.
- Krok 1: V slučke vypočítajte hodnotu „pos“ pomocou vzorca polohy sondy.
- Krok 2: Ak ide o zhodu, vráťte index položky a ukončite.
- Krok 3: Ak je položka menšia ako arr[pos], vypočítajte polohu sondy ľavého podpola. V opačnom prípade vypočítajte to isté v pravom podpole.
- Krok 4: Opakujte, kým sa nenájde zhoda alebo kým sa čiastkové pole nezníži na nulu.
Nižšie je uvedená implementácia algoritmu.
// C++ program to implement interpolation // search with recursion #include using namespace std; // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } // This code is contributed by equbalzeeshan
C // C program to implement interpolation search // with recursion #include // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) printf('Element found at index %d' index); else printf('Element not found.'); return 0; }
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } } // This code is contributed by equbalzeeshan
Python # Python3 program to implement # interpolation search # with recursion # If x is present in arr[0..n-1] then # returns index of it else returns -1. def interpolationSearch(arr lo hi x): # Since array is sorted an element present # in array must be in range defined by corner if (lo <= hi and x >= arr[lo] and x <= arr[hi]): # Probing the position with keeping # uniform distribution in mind. pos = lo + ((hi - lo) // (arr[hi] - arr[lo]) * (x - arr[lo])) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in right subarray if arr[pos] < x: return interpolationSearch(arr pos + 1 hi x) # If x is smaller x is in left subarray if arr[pos] > x: return interpolationSearch(arr lo pos - 1 x) return -1 # Driver code # Array of items in which # search will be conducted arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) # Element to be searched x = 18 index = interpolationSearch(arr 0 n - 1 x) if index != -1: print('Element found at index' index) else: print('Element not found') # This code is contributed by Hardik Jain
C# // C# program to implement // interpolation search using System; class GFG{ // If x is present in // arr[0..n-1] then // returns index of it // else returns -1. static int interpolationSearch(int []arr int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position // with keeping uniform // distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of // target found if(arr[pos] == x) return pos; // If x is larger x is in right sub array if(arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if(arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void Main() { // Array of items on which search will // be conducted. int []arr = new int[]{ 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; // Element to be searched int x = 18; int n = arr.Length; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found.'); } } // This code is contributed by equbalzeeshan
JavaScript <script> // Javascript program to implement Interpolation Search // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch(arr lo hi x){ let pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + Math.floor(((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));; // Condition of target found if (arr[pos] == x){ return pos; } // If x is larger x is in right sub array if (arr[pos] < x){ return interpolationSearch(arr pos + 1 hi x); } // If x is smaller x is in left sub array if (arr[pos] > x){ return interpolationSearch(arr lo pos - 1 x); } } return -1; } // Driver Code let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; // Element to be searched let x = 18 let index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1){ document.write(`Element found at index ${index}`) }else{ document.write('Element not found'); } // This code is contributed by _saurabh_jaiswal </script>
PHP // PHP program to implement $erpolation search // with recursion // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch($arr $lo $hi $x) { // Since array is sorted an element present // in array must be in range defined by corner if ($lo <= $hi && $x >= $arr[$lo] && $x <= $arr[$hi]) { // Probing the position with keeping // uniform distribution in mind. $pos = (int)($lo + (((double)($hi - $lo) / ($arr[$hi] - $arr[$lo])) * ($x - $arr[$lo]))); // Condition of target found if ($arr[$pos] == $x) return $pos; // If x is larger x is in right sub array if ($arr[$pos] < $x) return interpolationSearch($arr $pos + 1 $hi $x); // If x is smaller x is in left sub array if ($arr[$pos] > $x) return interpolationSearch($arr $lo $pos - 1 $x); } return -1; } // Driver Code // Array of items on which search will // be conducted. $arr = array(10 12 13 16 18 19 20 21 22 23 24 33 35 42 47); $n = sizeof($arr); $x = 47; // Element to be searched $index = interpolationSearch($arr 0 $n - 1 $x); // If element was found if ($index != -1) echo 'Element found at index '.$index; else echo 'Element not found.'; return 0; #This code is contributed by Susobhan Akhuli ?> Výstup
Element found at index 4
Časová zložitosť: O(log2(log2n)) pre priemerný prípad a O(n) pre najhorší prípad
Zložitosť pomocného priestoru: O(1)
Iný prístup: -
Toto je iteračný prístup pre vyhľadávanie interpolácie.
- Krok 1: V slučke vypočítajte hodnotu „pos“ pomocou vzorca polohy sondy.
- Krok 2: Ak ide o zhodu, vráťte index položky a ukončite.
- Krok 3: Ak je položka menšia ako arr[pos], vypočítajte polohu sondy ľavého podpola. V opačnom prípade vypočítajte to isté v pravom podpole.
- Krok 4: Opakujte, kým sa nenájde zhoda alebo kým sa čiastkové pole nezníži na nulu.
Nižšie je uvedená implementácia algoritmu.
C++// C++ program to implement interpolation search by using iteration approach #include using namespace std; int interpolationSearch(int arr[] int n int x) { // Find indexes of two corners int low = 0 high = (n - 1); // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) {if (arr[low] == x) return low; return -1; } // Probing the position with keeping // uniform distribution in mind. int pos = low + (((double)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in upper part if (arr[pos] < x) low = pos + 1; // If x is smaller x is in the lower part else high = pos - 1; } return -1; } // Main function int main() { // Array of items on whighch search will // be conducted. int arr[] = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = sizeof(arr)/sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr n x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } //this code contributed by Ajay Singh
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } }
Python # Python equivalent of above C++ code # Python program to implement interpolation search by using iteration approach def interpolationSearch(arr n x): # Find indexes of two corners low = 0 high = (n - 1) # Since array is sorted an element present # in array must be in range defined by corner while low <= high and x >= arr[low] and x <= arr[high]: if low == high: if arr[low] == x: return low; return -1; # Probing the position with keeping # uniform distribution in mind. pos = int(low + (((float(high - low)/( arr[high] - arr[low])) * (x - arr[low])))) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in upper part if arr[pos] < x: low = pos + 1; # If x is smaller x is in lower part else: high = pos - 1; return -1 # Main function if __name__ == '__main__': # Array of items on whighch search will # be conducted. arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) x = 18 # Element to be searched index = interpolationSearch(arr n x) # If element was found if index != -1: print ('Element found at index'index) else: print ('Element not found')
C# // C# program to implement interpolation search by using // iteration approach using System; class Program { // Interpolation Search function static int InterpolationSearch(int[] arr int n int x) { int low = 0; int high = n - 1; while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) return low; return -1; } int pos = low + (int)(((float)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); if (arr[pos] == x) return pos; if (arr[pos] < x) low = pos + 1; else high = pos - 1; } return -1; } // Main function static void Main(string[] args) { int[] arr = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = arr.Length; int x = 18; int index = InterpolationSearch(arr n x); if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found'); } } // This code is contributed by Susobhan Akhuli
JavaScript // JavaScript program to implement interpolation search by using iteration approach function interpolationSearch(arr n x) { // Find indexes of two corners let low = 0; let high = n - 1; // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) { return low; } return -1; } // Probing the position with keeping // uniform distribution in mind. let pos = Math.floor(low + (((high - low) / (arr[high] - arr[low])) * (x - arr[low]))); // Condition of target found if (arr[pos] == x) { return pos; } // If x is larger x is in upper part if (arr[pos] < x) { low = pos + 1; } // If x is smaller x is in lower part else { high = pos - 1; } } return -1; } // Main function let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; let x = 18; // Element to be searched let index = interpolationSearch(arr n x); // If element was found if (index != -1) { console.log('Element found at index' index); } else { console.log('Element not found'); }
Výstup
Element found at index 4
Časová zložitosť: O(log2(log2 n)) pre priemerný prípad a O(n) pre najhorší prípad
Zložitosť pomocného priestoru: O(1)
náhodný c