logo

Zistite, či má podpolie tvar hory alebo nie

Vyskúšajte to na GfG Practice ' title= #practiceLinkDiv { display: none !important; }

Dostali sme pole celých čísel a rozsah, ktorý potrebujeme, aby sme zistili, či podpole, ktoré spadá do tohto rozsahu, má hodnoty vo forme hora alebo nie. Všetky hodnoty podpola sú označené ako hora, ak buď všetky hodnoty rastú alebo klesajú, alebo najprv rastú a potom klesajú. 
Formálnejšie subarray [a1 a2 a3…aN] hovorí sa, že má tvar hory, ak existuje celé číslo K 1<= K <= N such that 
a1<= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= aN  

Príklady:  

  Input : Arr[]   = [2 3 2 4 4 6 3 2] Range = [0 2]   Output :    Yes   Explanation:   The output is yes  subarray is [2 3 2] so subarray first increases and then decreases   Input:    Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7]   Output:   Yes   Explanation:   The output is yes  subarray is [2 4 4 6 3 2] so subarray first increases and then decreases   Input:   Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3]   Output:   no   Explanation:   The output is no subarray is [3 2 4] so subarray is not in the form above stated
Recommended Practice Problém horskej subarray Skúste to!

Riešenie:  



    Prístup:Problém má viacero dotazov, takže pre každý dotaz by malo byť riešenie vypočítané s čo najmenšou časovou zložitosťou. Vytvorte teda dve ďalšie medzery dĺžky pôvodného poľa. Pre každý prvok nájdite posledný index na ľavej strane, ktorý sa zvyšuje, t. j. je väčší ako jeho predchádzajúci prvok, a nájdite prvok na pravej strane uloží prvý index na pravej strane, ktorý sa znižuje, t.j. je väčší ako jeho nasledujúci prvok. Ak je možné tieto hodnoty vypočítať pre každý index v konštantnom čase, potom pre každý daný rozsah možno dať odpoveď v konštantnom čase.Algoritmus: 
    1. Vytvorte dve ďalšie medzery dĺžky n vľavo a správne a dodatočná premenná lastptr
    2. Inicializovať vľavo[0] = 0 a lastptr = 0
    3. Prejdite pôvodné pole od druhého indexu po koniec
    4. Pre každý index skontrolujte, či je väčší ako predchádzajúci prvok, ak áno, potom aktualizujte lastptr s aktuálnym indexom.
    5. Pre každý indexový ukladací priestor lastptr v vľavo[i]
    6. inicializovať vpravo[N-1] = N-1 a lastptr = N-1
    7. Prejdite pôvodné pole od predposledného indexu po začiatok
    8. Pre každý index skontrolujte, či je väčší ako nasledujúci prvok, ak áno, potom aktualizujte lastptr s aktuálnym indexom.
    9. Pre každý indexový ukladací priestor lastptr v vpravo[i]
    10. Teraz spracujte otázky
    11. pre každý dotaz l r ak vpravo[l] >= vľavo[r] potom vytlačte áno inak č
    Implementácia:
C++
// C++ program to check whether a subarray is in // mountain form or not #include    using namespace std; // Utility method to construct left and right array int preprocess(int arr[] int N int left[] int right[]) {  // Initialize first left index as that index only  left[0] = 0;  int lastIncr = 0;  for (int i = 1; i < N; i++)  {  // if current value is greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }  // Initialize last right index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;  for (int i = N - 2; i >= 0; i--)  {  // if current value is greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  } } // Method returns true if arr[L..R] is in mountain form bool isSubarrayMountainForm(int arr[] int left[]  int right[] int L int R) {  // return true only if right at starting range is  // greater than left at ending range  return (right[L] >= left[R]); } // Driver code to test above methods int main() {  int arr[] = {2 3 2 4 4 6 3 2};  int N = sizeof(arr) / sizeof(int);  int left[N] right[N];  preprocess(arr N left right);  int L = 0;  int R = 2;  if (isSubarrayMountainForm(arr left right L R))  cout << 'Subarray is in mountain formn';  else  cout << 'Subarray is not in mountain formn';  L = 1;  R = 3;  if (isSubarrayMountainForm(arr left right L R))  cout << 'Subarray is in mountain formn';  else  cout << 'Subarray is not in mountain formn';  return 0; } 
Java
// Java program to check whether a subarray is in // mountain form or not class SubArray {  // Utility method to construct left and right array  static void preprocess(int arr[] int N int left[] int right[])  {  // initialize first left index as that index only  left[0] = 0;  int lastIncr = 0;    for (int i = 1; i < N; i++)  {  // if current value is greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;    for (int i = N - 2; i >= 0; i--)  {  // if current value is greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if arr[L..R] is in mountain form  static boolean isSubarrayMountainForm(int arr[] int left[]  int right[] int L int R)  {  // return true only if right at starting range is  // greater than left at ending range  return (right[L] >= left[R]);  }    public static void main(String[] args)  {  int arr[] = {2 3 2 4 4 6 3 2};  int N = arr.length;  int left[] = new int[N];  int right[] = new int[N];  preprocess(arr N left right);  int L = 0;  int R = 2;    if (isSubarrayMountainForm(arr left right L R))  System.out.println('Subarray is in mountain form');  else  System.out.println('Subarray is not in mountain form');    L = 1;  R = 3;    if (isSubarrayMountainForm(arr left right L R))  System.out.println('Subarray is in mountain form');  else  System.out.println('Subarray is not in mountain form');  } } // This Code is Contributed by Saket Kumar 
Python3
# Python 3 program to check whether a subarray is in # mountain form or not # Utility method to construct left and right array def preprocess(arr N left right): # initialize first left index as that index only left[0] = 0 lastIncr = 0 for i in range(1N): # if current value is greater than previous # update last increasing if (arr[i] > arr[i - 1]): lastIncr = i left[i] = lastIncr # initialize last right index as that index only right[N - 1] = N - 1 firstDecr = N - 1 i = N - 2 while(i >= 0): # if current value is greater than next # update first decreasing if (arr[i] > arr[i + 1]): firstDecr = i right[i] = firstDecr i -= 1 # method returns true if arr[L..R] is in mountain form def isSubarrayMountainForm(arr left right L R): # return true only if right at starting range is # greater than left at ending range return (right[L] >= left[R]) # Driver code  if __name__ == '__main__': arr = [2 3 2 4 4 6 3 2] N = len(arr) left = [0 for i in range(N)] right = [0 for i in range(N)] preprocess(arr N left right) L = 0 R = 2 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') L = 1 R = 3 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') # This code is contributed by # Surendra_Gangwar 
C#
// C# program to check whether  // a subarray is in mountain  // form or not using System; class GFG {    // Utility method to construct   // left and right array  static void preprocess(int []arr int N   int []left int []right)  {  // initialize first left   // index as that index only  left[0] = 0;  int lastIncr = 0;    for (int i = 1; i < N; i++)  {  // if current value is   // greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right   // index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;    for (int i = N - 2; i >= 0; i--)  {  // if current value is   // greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if  // arr[L..R] is in mountain form  static bool isSubarrayMountainForm(int []arr int []left  int []right int L int R)  {  // return true only if right at   // starting range is greater   // than left at ending range  return (right[L] >= left[R]);  }      // Driver Code  static public void Main ()  {  int []arr = {2 3 2 4  4 6 3 2};  int N = arr.Length;  int []left = new int[N];  int []right = new int[N];  preprocess(arr N left right);    int L = 0;  int R = 2;    if (isSubarrayMountainForm(arr left   right L R))  Console.WriteLine('Subarray is in ' +   'mountain form');  else  Console.WriteLine('Subarray is not ' +   'in mountain form');    L = 1;  R = 3;    if (isSubarrayMountainForm(arr left   right L R))  Console.WriteLine('Subarray is in ' +   'mountain form');  else  Console.WriteLine('Subarray is not ' +   'in mountain form');  } } // This code is contributed by aj_36 
JavaScript
<script>  // Javascript program to check whether   // a subarray is in mountain   // form or not    // Utility method to construct   // left and right array  function preprocess(arr N left right)  {  // initialize first left   // index as that index only  left[0] = 0;  let lastIncr = 0;    for (let i = 1; i < N; i++)  {  // if current value is   // greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right   // index as that index only  right[N - 1] = N - 1;  let firstDecr = N - 1;    for (let i = N - 2; i >= 0; i--)  {  // if current value is   // greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if  // arr[L..R] is in mountain form  function isSubarrayMountainForm(arr left right L R)  {  // return true only if right at   // starting range is greater   // than left at ending range  return (right[L] >= left[R]);  }    let arr = [2 3 2 4 4 6 3 2];  let N = arr.length;  let left = new Array(N);  let right = new Array(N);  preprocess(arr N left right);  let L = 0;  let R = 2;  if (isSubarrayMountainForm(arr left right L R))  document.write('Subarray is in ' + 'mountain form' + '
'
); else document.write('Subarray is not ' + 'in mountain form' + '
'
); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form'); else document.write('Subarray is not ' + 'in mountain form'); </script>
    výstup:
Subarray is in mountain form Subarray is not in mountain form
    Analýza zložitosti: 
      Časová zložitosť:O(n). 
      Potrebné sú len dva prechody, takže časová zložitosť je O(n).Priestorová zložitosť:O(n). 
      Potrebné sú dva ďalšie priestory dĺžky n, takže priestorová zložitosť je O(n).


 

pripojenie java mysql
Vytvoriť kvíz