logo

Počítajte podpisy s odlišnými znakmi K

Vzhľadom na reťazec pozostávajúce iba z malých anglických písmen a celého čísla K spočítajú celkový počet podretier (nie nevyhnutne odlišných) S, ktoré obsahujú presne odlišné znaky k.
Poznámka:

  • Podrestčka je susedná sekvencia znakov v reťazci.
  • Podrzy, ktoré sú identické, ale vyskytujú sa v rôznych pozíciách, mali by sa počítať osobitne.

Príklady:  



Vstup: s = 'abc' k = 2
Výstup: 2
Vysvetlenie: Možné podpisy sú [AB '' BC ']

Vstup: s = 'aba' k = 2
Výstup: 3
Vysvetlenie: Možné podpisy sú [AB '' BA '' ABA ']

Vstup: s = 'aa' k = 1
Výstup: 3
Vysvetlenie: Možné podpisy sú ['a' 'aa']]



Tabuľka obsahu

[Naivný prístup] Kontrola všetkých podretier - O (n^2) čas a O (1) priestor

Cieľom je skontrolovať všetky možné podretierstvo pomocou iterovania všetkých možných počiatočných pozícií (i) a koncových pozícií (J) v reťazci. Pre každý podresk udržiavajte booleovské pole na sledovanie rôznych znakov a počítadla pre počet rôznych znakov. Pri rozširovaní podretia zľava zľava doprava aktualizuje odlišný počet znakov kontrolou, či bol každý nový znak videný predtým. Kedykoľvek sa počet rôznych znakov presne zhoduje s danými k, zvyšuje počet odpovedí.

C++
#include    #include  using namespace std; int countSubstr(string &s int k) {  int n = s.length();  int ans = 0;    for (int i=0; i<n; i++) {    // array to check if a character   // is present in substring i..j  vector<bool> map(26 0);  int distinctCnt = 0;    for (int j=i; j<n; j++) {    // if new character is present  // increment distinct count.  if (map[s[j] - 'a'] == false) {  map[s[j] - 'a'] = true;  distinctCnt++;  }    // if distinct count is equal to k.  if (distinctCnt == k) ans++;  }  }    return ans; } int main() {  string s = 'abc';  int k = 2;    cout << countSubstr(s k);  return 0; } 
Java
class GfG {  static int countSubstr(String s int k) {  int n = s.length();  int ans = 0;  for (int i = 0; i < n; i++) {  // array to check if a character   // is present in substring i..j  boolean[] map = new boolean[26];  int distinctCnt = 0;  for (int j = i; j < n; j++) {  // if new character is present  // increment distinct count.  if (!map[s.charAt(j) - 'a']) {  map[s.charAt(j) - 'a'] = true;  distinctCnt++;  }  // if distinct count is equal to k.  if (distinctCnt == k) ans++;  }  }  return ans;  }  public static void main(String[] args) {  String s = 'abc';  int k = 2;  System.out.println(countSubstr(s k));  } } 
Python
def countSubstr(s k): n = len(s) ans = 0 for i in range(n): # array to check if a character  # is present in substring i..j map = [False] * 26 distinctCnt = 0 for j in range(i n): # if new character is present # increment distinct count. if not map[ord(s[j]) - ord('a')]: map[ord(s[j]) - ord('a')] = True distinctCnt += 1 # if distinct count is equal to k. if distinctCnt == k: ans += 1 return ans if __name__ == '__main__': s = 'abc' k = 2 print(countSubstr(s k)) 
C#
using System; class GfG {  static int countSubstr(string s int k) {  int n = s.Length;  int ans = 0;  for (int i = 0; i < n; i++) {  // array to check if a character   // is present in substring i..j  bool[] map = new bool[26];  int distinctCnt = 0;  for (int j = i; j < n; j++) {  // if new character is present  // increment distinct count.  if (!map[s[j] - 'a']) {  map[s[j] - 'a'] = true;  distinctCnt++;  }  // if distinct count is equal to k.  if (distinctCnt == k) ans++;  }  }  return ans;  }  static void Main() {  string s = 'abc';  int k = 2;  Console.WriteLine(countSubstr(s k));  } } 
JavaScript
function countSubstr(s k) {  let n = s.length;  let ans = 0;  for (let i = 0; i < n; i++) {  // array to check if a character   // is present in substring i..j  let map = new Array(26).fill(false);  let distinctCnt = 0;  for (let j = i; j < n; j++) {  // if new character is present  // increment distinct count.  if (!map[s.charCodeAt(j) - 'a'.charCodeAt(0)]) {  map[s.charCodeAt(j) - 'a'.charCodeAt(0)] = true;  distinctCnt++;  }  // if distinct count is equal to k.  if (distinctCnt === k) ans++;  }  }  return ans; } // Driver Code let s = 'abc'; let k = 2; console.log(countSubstr(s k)); 

Výstup
2

[Efektívny prístup] pomocou metódy posuvného okna - O (n) čas a O (1) priestor

Ide o použitie posuvné okno Technika na efektívne počítanie podretierkov s väčšinou odlišnými znakmi K a potom odpočítať počet podretier s odlišnými znakmi K-1, aby ste získali počet podretín s presne odlišnými znakmi.



Implementácia krok za krokom:

  • Na sledovanie frekvencií znakov použite posuvné okno s radom veľkosti 26.
  • Rozšírte okno doprava a pridajte znaky.
  • Zmršťujte okno zľava, keď odlišné znaky presahujú k.
  • Počítajte všetky platné podpisy v okne.
  • Odpočítajte podretia s odlišnými znakmi K-1 od rôznych znakov.
C++
#include    #include  using namespace std; // function which finds the number of  // substrings with atmost k Distinct // characters. int count(string &s int k) {  int n = s.length();  int ans = 0;    // use sliding window technique  vector<int> freq(26 0);  int distinctCnt = 0;  int i = 0;    for (int j = 0; j < n; j++) {    // expand window and add character  freq[s[j] - 'a']++;  if (freq[s[j] - 'a'] == 1) distinctCnt++;    // shrink window if distinct characters exceed k  while (distinctCnt > k) {  freq[s[i] - 'a']--;  if (freq[s[i] - 'a'] == 0) distinctCnt--;  i++;  }    // add number of valid substrings ending at j  ans += j - i + 1;  }    return ans; } // function to find the number of substrings // with exactly k Distinct characters. int countSubstr(string &s int k) {  int n = s.length();  int ans = 0;    // subtract substrings with at most   // k-1 distinct characters from substrings  // with at most k distinct characters  ans = count(s k) - count(s k-1);    return ans; } int main() {  string s = 'abc';  int k = 2;  cout << countSubstr(s k);  return 0; } 
Java
class GfG {  // function which finds the number of   // substrings with atmost k Distinct  // characters.  static int count(String s int k) {  int n = s.length();  int ans = 0;  // use sliding window technique  int[] freq = new int[26];  int distinctCnt = 0;  int i = 0;  for (int j = 0; j < n; j++) {  // expand window and add character  freq[s.charAt(j) - 'a']++;  if (freq[s.charAt(j) - 'a'] == 1) distinctCnt++;  // shrink window if distinct characters exceed k  while (distinctCnt > k) {  freq[s.charAt(i) - 'a']--;  if (freq[s.charAt(i) - 'a'] == 0) distinctCnt--;  i++;  }  // add number of valid substrings ending at j  ans += j - i + 1;  }  return ans;  }  // function to find the number of substrings  // with exactly k Distinct characters.  static int countSubstr(String s int k) {  int n = s.length();  int ans = 0;  // Subtract substrings with at most   // k-1 distinct characters from substrings  // with at most k distinct characters  ans = count(s k) - count(s k - 1);  return ans;  }  public static void main(String[] args) {  String s = 'abc';  int k = 2;  System.out.println(countSubstr(s k));  } } 
Python
# function which finds the number of  # substrings with atmost k Distinct # characters. def count(s k): n = len(s) ans = 0 # ese sliding window technique freq = [0] * 26 distinctCnt = 0 i = 0 for j in range(n): # expand window and add character freq[ord(s[j]) - ord('a')] += 1 if freq[ord(s[j]) - ord('a')] == 1: distinctCnt += 1 # shrink window if distinct characters exceed k while distinctCnt > k: freq[ord(s[i]) - ord('a')] -= 1 if freq[ord(s[i]) - ord('a')] == 0: distinctCnt -= 1 i += 1 # add number of valid substrings ending at j ans += j - i + 1 return ans # function to find the number of substrings # with exactly k Distinct characters. def countSubstr(s k): n = len(s) ans = 0 # subtract substrings with at most  # k-1 distinct characters from substrings # with at most k distinct characters ans = count(s k) - count(s k - 1) return ans if __name__ == '__main__': s = 'abc' k = 2 print(countSubstr(s k)) 
C#
using System; class GfG {  // function which finds the number of   // substrings with atmost k Distinct  // characters.  static int count(string s int k) {  int n = s.Length;  int ans = 0;  // use sliding window technique  int[] freq = new int[26];  int distinctCnt = 0;  int i = 0;  for (int j = 0; j < n; j++) {  // expand window and add character  freq[s[j] - 'a']++;  if (freq[s[j] - 'a'] == 1) distinctCnt++;  // shrink window if distinct characters exceed k  while (distinctCnt > k) {  freq[s[i] - 'a']--;  if (freq[s[i] - 'a'] == 0) distinctCnt--;  i++;  }  // add number of valid substrings ending at j  ans += j - i + 1;  }  return ans;  }  // function to find the number of substrings  // with exactly k Distinct characters.  static int countSubstr(string s int k) {  int n = s.Length;  int ans = 0;  // subtract substrings with at most   // k-1 distinct characters from substrings  // with at most k distinct characters  ans = count(s k) - count(s k - 1);  return ans;  }  static void Main() {  string s = 'abc';  int k = 2;  Console.WriteLine(countSubstr(s k));  } } 
JavaScript
// function which finds the number of  // substrings with atmost k Distinct // characters. function count(s k) {  let n = s.length;  let ans = 0;  // use sliding window technique  let freq = new Array(26).fill(0);  let distinctCnt = 0;  let i = 0;  for (let j = 0; j < n; j++) {  // expand window and add character  freq[s.charCodeAt(j) - 'a'.charCodeAt(0)]++;  if (freq[s.charCodeAt(j) - 'a'.charCodeAt(0)] === 1)  distinctCnt++;  // shrink window if distinct characters exceed k  while (distinctCnt > k) {  freq[s.charCodeAt(i) - 'a'.charCodeAt(0)]--;  if (freq[s.charCodeAt(i) - 'a'.charCodeAt(0)] === 0)  distinctCnt--;  i++;  }  // add number of valid substrings ending at j  ans += j - i + 1;  }  return ans; } // sunction to find the number of substrings // with exactly k Distinct characters. function countSubstr(s k) {  let n = s.length;  let ans = 0;  // subtract substrings with at most   // k-1 distinct characters from substrings  // with at most k distinct characters  ans = count(s k) - count(s k - 1);  return ans; } // Driver Code let s = 'abc'; let k = 2; console.log(countSubstr(s k)); 

Výstup
2