Dané číslo 'n' a n čísla triedia čísla pomocou Súbežné Zlúčiť triedenie. (Tip: Skúste použiť systémové volania shmget shmat).
Časť 1: Algoritmus (AKO?)
Rekurzívne urobte z dvoch podradených procesov jeden pre ľavú polovicu a jeden pre pravú polovicu. Ak je počet prvkov v poli pre proces menší ako 5, vykonajte a Triedenie vloženia . Rodič dvoch detí potom výsledok spojí a vráti sa späť k rodičovi atď. Ale ako to urobiť súbežne?
Časť 2: Logické (PREČO?)
Dôležitou súčasťou riešenia tohto problému nie je algoritmus, ale vysvetlenie pojmov operačného systému a jadra.
Aby sme dosiahli súbežné triedenie, potrebujeme spôsob, aby dva procesy fungovali na rovnakom poli súčasne. Na uľahčenie Linuxu poskytuje množstvo systémových volaní prostredníctvom jednoduchých koncových bodov API. Dvaja z nich sú shmget() (pre pridelenie zdieľanej pamäte) a shmat() (pre operácie so zdieľanou pamäťou). Vytvárame zdieľaný pamäťový priestor medzi detským procesom, ktorý rozvetvujeme. Každý segment je rozdelený na ľavé a pravé dieťa, ktoré je zoradené podľa zaujímavej časti, pretože pracuje súčasne! Shmget() žiada jadro, aby pridelilo a zdieľaná stránka pre oba procesy.
Prečo tradičné fork() nefunguje?
Odpoveď spočíva v tom, čo fork() skutočne robí. Z dokumentácie 'fork() vytvorí nový proces duplikovaním volajúceho procesu'. Podradený proces a nadradený proces bežia v oddelených pamäťových priestoroch. V čase fork() majú oba pamäťové priestory rovnaký obsah. Pamäť zapisuje súbor-deskriptor (fd), zmeny atď. vykonané jedným z procesov nemajú vplyv na druhý. Preto potrebujeme segment zdieľanej pamäte.
#include #include #include #include #include #include #include #include void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) { int i len = (h - l + 1); // Using insertion sort for small sized array if (len <= 5) { insertionSort(a + l len); return; } pid_t lpid rpid; lpid = fork(); if (lpid < 0) { // Lchild proc not created perror('Left Child Proc. not createdn'); _exit(-1); } else if (lpid == 0) { mergeSort(a l l + len / 2 - 1); _exit(0); } else { rpid = fork(); if (rpid < 0) { // Rchild proc not created perror('Right Child Proc. not createdn'); _exit(-1); } else if (rpid == 0) { mergeSort(a l + len / 2 h); _exit(0); } } int status; // Wait for child processes to finish waitpid(lpid &status 0); waitpid(rpid &status 0); // Merge the sorted subarrays merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) { int i key j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) { // We can directly copy the sorted elements // in the final array no need for a temporary // sorted array. int count = h2 - l1 + 1; int sorted[count]; int i = l1 k = h1 + 1 m = 0; while (i <= h1 && k <= h2) { if (a[i] < a[k]) sorted[m++] = a[i++]; else if (a[k] < a[i]) sorted[m++] = a[k++]; else if (a[i] == a[k]) { sorted[m++] = a[i++]; sorted[m++] = a[k++]; } } while (i <= h1) sorted[m++] = a[i++]; while (k <= h2) sorted[m++] = a[k++]; int arr_count = l1; for (i = 0; i < count; i++ l1++) a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) { if (len == 1) { std::cout << 'Sorting Done Successfully' << std::endl; return; } int i; for (i = 1; i < len; i++) { if (arr[i] < arr[i - 1]) { std::cout << 'Sorting Not Done' << std::endl; return; } } std::cout << 'Sorting Done Successfully' << std::endl; return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) { // Create random arrays int i; for (i = 0; i < len; i++) a[i] = rand(); return; } // Driver code int main() { int shmid; key_t key = IPC_PRIVATE; int *shm_array; int length = 128; // Calculate segment length size_t SHM_SIZE = sizeof(int) * length; // Create the segment. if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0) { perror('shmget'); _exit(1); } // Now we attach the segment to our data space. if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1) { perror('shmat'); _exit(1); } // Create a random array of given length srand(time(NULL)); fillData(shm_array length); // Sort the created array mergeSort(shm_array 0 length - 1); // Check if array is sorted or not isSorted(shm_array length); /* Detach from the shared memory now that we are done using it. */ if (shmdt(shm_array) == -1) { perror('shmdt'); _exit(1); } /* Delete the shared memory segment. */ if (shmctl(shmid IPC_RMID NULL) == -1) { perror('shmctl'); _exit(1); } return 0; }
Java import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort { // Method to merge sorted subarrays private static void merge(int[] a int low int mid int high) { int[] temp = new int[high - low + 1]; int i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } System.arraycopy(temp 0 a low temp.length); } // RecursiveAction for fork/join framework static class SortTask extends RecursiveAction { private final int[] a; private final int low high; SortTask(int[] a int low int high) { this.a = a; this.low = low; this.high = high; } @Override protected void compute() { if (high - low <= 5) { Arrays.sort(a low high + 1); } else { int mid = low + (high - low) / 2; invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high)); merge(a low mid high); } } } // Method to check if array is sorted private static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Method to fill array with random numbers private static void fillData(int[] a) { Random rand = new Random(); for (int i = 0; i < a.length; i++) { a[i] = rand.nextInt(); } } public static void main(String[] args) { int length = 128; int[] a = new int[length]; fillData(a); ForkJoinPool pool = new ForkJoinPool(); pool.invoke(new SortTask(a 0 a.length - 1)); if (isSorted(a)) { System.out.println('Sorting Done Successfully'); } else { System.out.println('Sorting Not Done'); } } }
Python3 import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time)
JavaScript // Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) { let temp = new Array(high - low + 1); let i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } for (let p = 0; p < temp.length; p++) { a[low + p] = temp[p]; } } // Function to check if array is sorted function isSorted(a) { for (let i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Function to fill array with random numbers function fillData(a) { for (let i = 0; i < a.length; i++) { a[i] = Math.floor(Math.random() * 1000); } } // Function to sort the array using merge sort function sortArray(a low high) { if (high - low <= 5) { a.sort((a b) => a - b); } else { let mid = low + Math.floor((high - low) / 2); sortArray(a low mid); sortArray(a mid + 1 high); merge(a low mid high); } } // Main function function main() { let length = 128; let a = new Array(length); fillData(a); sortArray(a 0 a.length - 1); if (isSorted(a)) { console.log('Sorting Done Successfully'); } else { console.log('Sorting Not Done'); } } main();
výstup:
Sorting Done Successfully
Časová zložitosť :O(N log N)
Pomocný priestor:O(N)
Zlepšenie výkonu?
Pokúste sa načasovať kód a porovnať jeho výkon s tradičným sekvenčným kódom. Boli by ste prekvapení, keby ste vedeli, že výkon sekvenčného triedenia je lepší!
Keď povedzme ľavé dieťa pristupuje k ľavému poli, pole sa načíta do vyrovnávacej pamäte procesora. Teraz, keď sa pristúpi k pravému poli (kvôli súbežným prístupom), dôjde k vynechaniu vyrovnávacej pamäte, pretože vyrovnávacia pamäť je vyplnená ľavým segmentom a potom sa pravý segment skopíruje do vyrovnávacej pamäte. Tento proces tam a späť pokračuje a znižuje výkon na takú úroveň, že funguje horšie ako sekvenčný kód.
Existujú spôsoby, ako znížiť počet chýb vo vyrovnávacej pamäti riadením pracovného toku kódu. Nedá sa im však úplne vyhnúť!