logo

Preťaženie C++ (funkcia a operátor)

Ak vytvoríme dva alebo viac členov s rovnakým názvom, ale rozdielnym počtom alebo typom parametra, je to známe ako preťaženie C++. V C++ môžeme preťažiť:

  • metódy,
  • konštruktérov a
  • indexované vlastnosti

Je to preto, že tieto členy majú iba parametre.

Typy preťaženia v C++ sú:

  • Preťaženie funkcií
  • Preťaženie operátora
Preťaženie C++

Preťaženie funkcií C++

Preťaženie funkcie je definované ako proces dvoch alebo viacerých funkcií s rovnakým názvom, ale odlišnými parametrami, známy ako preťaženie funkcie v C++. Pri preťažení funkciami sa funkcia predefinuje buď použitím rôznych typov argumentov alebo iného počtu argumentov. Iba prostredníctvom týchto rozdielov môže kompilátor rozlišovať medzi funkciami.

java cast char na reťazec

The výhodu Preťaženie funkcií spočíva v tom, že zvyšuje čitateľnosť programu, pretože pre tú istú akciu nemusíte používať rôzne názvy.

Príklad preťaženia funkcie C++

Pozrime sa na jednoduchý príklad preťaženia funkcie, kde meníme počet argumentov metódy add().

// program preťaženia funkcií, keď sa počet argumentov mení.

 #include using namespace std; class Cal { public: static int add(int a,int b){ return a + b; } static int add(int a, int b, int c) { return a + b + c; } }; int main(void) { Cal C; // class object declaration. cout&lt;<c.add(10, 20)<<endl; cout<<c.add(12, 20, 23); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> 30 55 </pre> <p>Let&apos;s see the simple example when the type of the arguments vary.</p> <p>// Program of function overloading with different types of arguments.</p> <pre> #include using namespace std; int mul(int,int); float mul(float,int); int mul(int a,int b) { return a*b; } float mul(double x, int y) { return x*y; } int main() { int r1 = mul(6,7); float r2 = mul(0.2,3); std::cout &lt;&lt; &apos;r1 is : &apos; &lt;<r1<< std::endl; std::cout <<'r2 is : ' <<r2<< return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> r1 is : 42 r2 is : 0.6 </pre> <h2>Function Overloading and Ambiguity</h2> <p>When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as <strong>function overloading</strong> .</p> <p>When the compiler shows the ambiguity error, the compiler does not run the program.</p> <p> <strong>Causes of Function Overloading:</strong> </p> <ul> <li>Type Conversion.</li> <li>Function with default arguments.</li> <li>Function with pass by reference.</li> </ul> <img src="//techcodeview.com/img/c-tutorial/89/c-overloading-function-2.webp" alt="C++ Overloading"> <ul> <li>Type Conversion:</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << 'value of j is : ' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << 'value of a is : ' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << 'value of b is : ' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<'the count is: '<<num; } }; int main() { test tt; ++tt; calling of a function 'void operator ++()' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<'the result of the addition two objects is : '<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></'the></pre></'the></pre></x<<></pre></i<<></pre></i<<></pre></r1<<></pre></c.add(10,>

Pozrime sa na jednoduchý príklad, keď sa typ argumentov líši.

// Program preťažovania funkcií rôznymi typmi argumentov.

 #include using namespace std; int mul(int,int); float mul(float,int); int mul(int a,int b) { return a*b; } float mul(double x, int y) { return x*y; } int main() { int r1 = mul(6,7); float r2 = mul(0.2,3); std::cout &lt;&lt; &apos;r1 is : &apos; &lt;<r1<< std::endl; std::cout <<\'r2 is : \' <<r2<< return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> r1 is : 42 r2 is : 0.6 </pre> <h2>Function Overloading and Ambiguity</h2> <p>When the compiler is unable to decide which function is to be invoked among the overloaded function, this situation is known as <strong>function overloading</strong> .</p> <p>When the compiler shows the ambiguity error, the compiler does not run the program.</p> <p> <strong>Causes of Function Overloading:</strong> </p> <ul> <li>Type Conversion.</li> <li>Function with default arguments.</li> <li>Function with pass by reference.</li> </ul> <img src="//techcodeview.com/img/c-tutorial/89/c-overloading-function-2.webp" alt="C++ Overloading"> <ul> <li>Type Conversion:</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << \'value of j is : \' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << \'value of a is : \' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << \'value of b is : \' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\'the count is: \'<<num; } }; int main() { test tt; ++tt; calling of a function \'void operator ++()\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\'the result of the addition two objects is : \'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\'the></pre></\'the></pre></x<<></pre></i<<></pre></i<<></pre></r1<<>

Preťaženie funkcií a nejednoznačnosť

Keď sa kompilátor nedokáže rozhodnúť, ktorá funkcia sa má vyvolať z preťažených funkcií, táto situácia je známa ako preťaženie funkcie .

Keď kompilátor zobrazí chybu nejednoznačnosti, kompilátor nespustí program.

Príčiny preťaženia funkcií:

  • Typ Konverzia.
  • Funkcia s predvolenými argumentmi.
  • Funkcia s prechodom odkazom.
Preťaženie C++
  • Typ konverzie:

Pozrime sa na jednoduchý príklad.

 #include using namespace std; void fun(int); void fun(float); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(float j) { std::cout << \'value of j is : \' <<j<< int main() fun(12); fun(1.2); return 0; < pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(double)&apos; is ambiguous</strong> &apos;. The fun(10) will call the first function. The fun(1.2) calls the second function according to our prediction. But, this does not refer to any function as in C++, all the floating point constants are treated as double not as a float. If we replace float to double, the program works. Therefore, this is a type conversion from float to double.</p> <ul> <li>Function with Default Arguments</li> </ul> <p> <strong>Let&apos;s see a simple example.</strong> </p> <pre> #include using namespace std; void fun(int); void fun(int,int); void fun(int i) { std::cout &lt;&lt; &apos;Value of i is : &apos; &lt; <i<< std::endl; } void fun(int a,int b="9)" { std::cout << \'value of a is : \' < <a<< <b<< int main() fun(12); return 0; pre> <p>The above example shows an error &apos;call of overloaded &apos;fun(int)&apos; is ambiguous&apos;. The fun(int a, int b=9) can be called in two ways: first is by calling the function with one argument, i.e., fun(12) and another way is calling the function with two arguments, i.e., fun(4,5). The fun(int i) function is invoked with one argument. Therefore, the compiler could not be able to select among fun(int i) and fun(int a,int b=9).</p> <ul> <li>Function with pass by reference</li> </ul> <p>Let&apos;s see a simple example.</p> <pre> #include using namespace std; void fun(int); void fun(int &amp;); int main() { int a=10; fun(a); // error, which f()? return 0; } void fun(int x) { std::cout &lt;&lt; &apos;Value of x is : &apos; &lt;<x<< std::endl; } void fun(int &b) { std::cout << \'value of b is : \' < <b<< pre> <p>The above example shows an error &apos; <strong>call of overloaded &apos;fun(int&amp;)&apos; is ambiguous</strong> &apos;. The first function takes one integer argument and the second function takes a reference parameter as an argument. In this case, the compiler does not know which function is needed by the user as there is no syntactical difference between the fun(int) and fun(int &amp;).</p> <h2>C++ Operators Overloading</h2> <p>Operator overloading is a compile-time polymorphism in which the operator is overloaded to provide the special meaning to the user-defined data type. Operator overloading is used to overload or redefines most of the operators available in C++. It is used to perform the operation on the user-defined data type. For example, C++ provides the ability to add the variables of the user-defined data type that is applied to the built-in data types.</p> <p>The advantage of Operators overloading is to perform different operations on the same operand.</p> <p> <strong>Operator that cannot be overloaded are as follows:</strong> </p> <ul> <li>Scope operator (::)</li> <li>Sizeof</li> <li>member selector(.)</li> <li>member pointer selector(*)</li> <li>ternary operator(?:) </li> </ul> <h2>Syntax of Operator Overloading</h2> <pre> return_type class_name : : operator op(argument_list) { // body of the function. } </pre> <p>Where the <strong>return type</strong> is the type of value returned by the function. </p><p> <strong>class_name</strong> is the name of the class.</p> <p> <strong>operator op</strong> is an operator function where op is the operator being overloaded, and the operator is the keyword.</p> <h2>Rules for Operator Overloading</h2> <ul> <li>Existing operators can only be overloaded, but the new operators cannot be overloaded.</li> <li>The overloaded operator contains atleast one operand of the user-defined data type.</li> <li>We cannot use friend function to overload certain operators. However, the member function can be used to overload those operators.</li> <li>When unary operators are overloaded through a member function take no explicit arguments, but, if they are overloaded by a friend function, takes one argument.</li> <li>When binary operators are overloaded through a member function takes one explicit argument, and if they are overloaded through a friend function takes two explicit arguments. </li> </ul> <h2>C++ Operators Overloading Example</h2> <p>Let&apos;s see the simple example of operator overloading in C++. In this example, void operator ++ () operator function is defined (inside Test class).</p> <p>// program to overload the unary operator ++.</p> <pre> #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\'the count is: \'<<num; } }; int main() { test tt; ++tt; calling of a function \'void operator ++()\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\'the result of the addition two objects is : \'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\'the></pre></\'the></pre></x<<></pre></i<<></pre></i<<>

Kde návratový typ je typ hodnoty vrátenej funkciou.

názov_triedy je názov triedy.

operátor op je funkcia operátora, kde op je preťažený operátor a operátor je kľúčové slovo.

Pravidlá pre preťaženie operátora

  • Existujúci operátori môžu byť iba preťažení, ale noví operátori nemôžu byť preťažení.
  • Preťažený operátor obsahuje aspoň jeden operand užívateľom definovaného dátového typu.
  • Nemôžeme použiť funkciu priateľa na preťaženie určitých operátorov. Členskú funkciu však možno použiť na preťaženie týchto operátorov.
  • Keď sú unárne operátory preťažené členskou funkciou, neberú žiadne explicitné argumenty, ale ak sú preťažené priateľskou funkciou, preberá jeden argument.
  • Keď sú binárne operátory preťažené prostredníctvom členskej funkcie, prevezme jeden explicitný argument a ak sú preťažené prostredníctvom funkcie priateľ, vezme si dva explicitné argumenty.

Príklad preťaženia operátorov C++

Pozrime sa na jednoduchý príklad preťaženia operátorov v C++. V tomto príklade je definovaná funkcia operátora void ++ () (v rámci triedy Test).

// program na preťaženie unárneho operátora ++.

 #include using namespace std; class Test { private: int num; public: Test(): num(8){} void operator ++() { num = num+2; } void Print() { cout&lt;<\\'the count is: \\'<<num; } }; int main() { test tt; ++tt; calling of a function \\'void operator ++()\\' tt.print(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The Count is: 10 </pre> <p>Let&apos;s see a simple example of overloading the binary operators.</p> <p>// program to overload the binary operators.</p> <pre> #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\\'the result of the addition two objects is : \\'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\\'the></pre></\\'the>

Pozrime sa na jednoduchý príklad preťaženia binárnych operátorov.

// program na preťaženie binárnych operátorov.

 #include using namespace std; class A { int x; public: A(){} A(int i) { x=i; } void operator+(A); void display(); }; void A :: operator+(A a) { int m = x+a.x; cout&lt;<\\'the result of the addition two objects is : \\'<<m; } int main() { a a1(5); a2(4); a1+a2; return 0; < pre> <p> <strong>Output:</strong> </p> <pre> The result of the addition of two objects is : 9 </pre></\\'the>