Dané pole arr[0..N-1]. Je potrebné vykonať nasledujúce operácie.
- aktualizácia (l r val) : Pridajte „val“ ku všetkým prvkom v poli od [l r].
- getRangeSum(l r) : Nájdite súčet všetkých prvkov v poli z [l r].
Na začiatku sú všetky prvky v poli 0. Dotazy môžu byť v akomkoľvek poradí, t. j. pred súčtom rozsahu môže byť veľa aktualizácií.
Príklad:
Vstup: N = 5 // {0 0 0 0 0}
Dopyty: aktualizácia: l = 0 r = 4 val = 2
aktualizácia: l = 3 r = 4 val = 3
getRangeSum : l = 2 r = 4výstup: Súčet prvkov rozsahu [2 4] je 12
Vysvetlenie: Pole po prvej aktualizácii sa zmení na {2 2 2 2 2}
Pole po druhej aktualizácii sa zmení na {2 2 2 5 5}
Naivný prístup: Ak chcete problém vyriešiť, postupujte podľa nasledujúcej myšlienky:
V predchádzajúci príspevok diskutovali sme o riešení aktualizácie rozsahu a bodových dotazov pomocou BIT.
rangeUpdate(l r val) : K prvku na indexe 'l' pridáme 'val'. Od prvku na indexe 'r+1' odpočítame 'val'.
getElement(index) [alebo getSum()]: Vrátime súčet prvkov od 0 do indexu, ktorý možno rýchlo získať pomocou BIT.
RangeSum() môžeme vypočítať pomocou dotazov getSum().
rangeSum(l r) = getSum(r) - getSum(l-1)čo je romJednoduché riešenie je použiť riešenia uvedené v predchádzajúci príspevok . Dotaz na aktualizáciu rozsahu je rovnaký. Dotaz súčtu rozsahu možno dosiahnuť vykonaním dotazu get pre všetky prvky v rozsahu.
Efektívny prístup: Ak chcete problém vyriešiť, postupujte podľa nasledujúcej myšlienky:
Súčet rozsahu získame pomocou súčtov prefixov. Ako zabezpečiť, aby sa aktualizácia vykonala tak, aby bolo možné rýchlo vykonať súčet prefixov? Uvažujme situáciu, keď súčet predpony [0 k] (kde 0<= k < n) is needed after range update on the range [l r]. Three cases arise as k can possibly lie in 3 regions.
- Prípad 1 : 0< k < l
- Aktualizačný dotaz neovplyvní dopyt na súčet.
- Prípad 2 : l<= k <= r
- Zvážte príklad: Pridajte 2 do rozsahu [2 4], výsledné pole by bolo: 0 0 2 2 2
Ak k = 3 Súčet z [0 k] = 4Ako dosiahnuť tento výsledok?
Stačí pridať val z lthindex na kthindex. Suma sa po aktualizačnom dotaze zvýši o 'val*(k) - val*(l-1)'.
- Prípad 3 : k > r
- V tomto prípade musíme pridať 'val' z lthindex do rthindex. Súčet sa zvýši o 'val*r – val*(l-1)' kvôli aktualizačnému dotazu.
Pripomienky:
Prípad 1: je jednoduchý, pretože súčet by zostal rovnaký ako pred aktualizáciou.
Prípad 2: Súčet bol zvýšený o val*k - val*(l-1). Môžeme nájsť 'val' je to podobné ako nájsť ithprvok v Aktualizácia rozsahu a článok s bodovým dotazom . Takže udržiavame jeden BIT pre aktualizáciu rozsahu a bodové dotazy, tento BIT bude užitočný pri hľadaní hodnoty kthindex. Teraz sa vypočíta val * k, ako zvládnuť extra výraz val*(l-1)?
Aby sme zvládli tento dodatočný termín, zachovávame ďalší BIT (BIT2). Aktualizovať hodnotu * (l-1) na lthindex, takže keď sa dotaz getSum vykoná na BIT2, výsledok bude ako val*(l-1).
Prípad 3: Súčet v prípade 3 bol zvýšený o 'val*r - val *(l-1)', hodnotu tohto členu možno získať pomocou BIT2. Namiesto sčítania odčítame 'val*(l-1) - val*r', pretože túto hodnotu môžeme získať z BIT2 pridaním val*(l-1) ako v prípade 2 a odčítaním val*r pri každej operácii aktualizácie.
Aktualizovať dopyt
Aktualizácia (BITree1 l val)
Aktualizácia (BITree1 r+1 -val)
AktualizovaťBIT2(BITree2 l hodnota*(l-1))
AktualizovaťBIT2(BITree2 r+1 -val*r)Rozsah súčet
getSum(BITTree1 k) *k) - getSum(BITTree2 k)
Na vyriešenie problému postupujte podľa nasledujúcich krokov:
- Vytvorte dva binárne indexové stromy pomocou danej funkcie constructBITree()
- Ak chcete nájsť súčet v danom rozsahu, zavolajte funkciu rangeSum() s parametrami ako daný rozsah a binárne indexované stromy
- Zavolajte súčet funkcie, ktorý vráti súčet v rozsahu [0 X]
- Vrátiť súčet (R) - súčet (L-1)
- Vo vnútri tejto funkcie zavolajte funkciu getSum(), ktorá vráti súčet poľa z [0 X]
- Vrátiť getSum(strom1 x) * x - getSum(strom2 x)
- Vo vnútri funkcie getSum() vytvorte celočíselný súčet rovný nule a zvýšte index o 1
- Kým je index väčší ako nula, zvýšte súčet o strom[index]
- Znížte index o (index & (-index)), aby sa index presunul do nadradeného uzla v strome
- Vrátená suma
- Vytlačte súčet v danom rozsahu
Nižšie je uvedená implementácia vyššie uvedeného prístupu:
zásobník v dsC++
// C++ program to demonstrate Range Update // and Range Queries using BIT #include using namespace std; // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] int getSum(int BITree[] int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. void updateBIT(int BITree[] int n int index int val) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] int sum(int x int BITTree1[] int BITTree2[]) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } void updateRange(int BITTree1[] int BITTree2[] int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } int rangeSum(int l int r int BITTree1[] int BITTree2[]) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } int* constructBITree(int n) { // Create and initialize BITree[] as 0 int* BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver code int main() { int n = 5; // Construct two BIT int *BITTree1 *BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 r = 4 val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 r = 4; cout << 'Sum of elements from [' << l << '' << r << '] is '; cout << rangeSum(l r BITTree1 BITTree2) << 'n'; return 0; }
Java // Java program to demonstrate Range Update // and Range Queries using BIT import java.util.*; class GFG { // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] static int getSum(int BITree[] int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than the index in // arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. static void updateBIT(int BITree[] int n int index int val) { // index in BITree[] is 1 more than the index in // arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] static int sum(int x int BITTree1[] int BITTree2[]) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } static void updateRange(int BITTree1[] int BITTree2[] int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } static int rangeSum(int l int r int BITTree1[] int BITTree2[]) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } static int[] constructBITree(int n) { // Create and initialize BITree[] as 0 int[] BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Program to test above function public static void main(String[] args) { int n = 5; // Contwo BIT int[] BITTree1; int[] BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2; r = 4; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1; r = 4; System.out.print('Sum of elements from [' + l + '' + r + '] is '); System.out.print(rangeSum(l r BITTree1 BITTree2) + 'n'); } } // This code is contributed by 29AjayKumar
Python3 # Python3 program to demonstrate Range Update # and Range Queries using BIT # Returns sum of arr[0..index]. This function assumes # that the array is preprocessed and partial sums of # array elements are stored in BITree[] def getSum(BITree: list index: int) -> int: summ = 0 # Initialize result # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse ancestors of BITree[index] while index > 0: # Add current element of BITree to sum summ += BITree[index] # Move index to parent node in getSum View index -= index & (-index) return summ # Updates a node in Binary Index Tree (BITree) at given # index in BITree. The given value 'val' is added to # BITree[i] and all of its ancestors in tree. def updateBit(BITTree: list n: int index: int val: int) -> None: # index in BITree[] is 1 more than the index in arr[] index = index + 1 # Traverse all ancestors and add 'val' while index <= n: # Add 'val' to current node of BI Tree BITTree[index] += val # Update index to that of parent in update View index += index & (-index) # Returns the sum of array from [0 x] def summation(x: int BITTree1: list BITTree2: list) -> int: return (getSum(BITTree1 x) * x) - getSum(BITTree2 x) def updateRange(BITTree1: list BITTree2: list n: int val: int l: int r: int) -> None: # Update Both the Binary Index Trees # As discussed in the article # Update BIT1 updateBit(BITTree1 n l val) updateBit(BITTree1 n r + 1 -val) # Update BIT2 updateBit(BITTree2 n l val * (l - 1)) updateBit(BITTree2 n r + 1 -val * r) def rangeSum(l: int r: int BITTree1: list BITTree2: list) -> int: # Find sum from [0r] then subtract sum # from [0l-1] in order to find sum from # [lr] return summation(r BITTree1 BITTree2) - summation( l - 1 BITTree1 BITTree2) # Driver Code if __name__ == '__main__': n = 5 # BIT1 to get element at any index # in the array BITTree1 = [0] * (n + 1) # BIT 2 maintains the extra term # which needs to be subtracted BITTree2 = [0] * (n + 1) # Add 5 to all the elements from [04] l = 0 r = 4 val = 5 updateRange(BITTree1 BITTree2 n val l r) # Add 10 to all the elements from [24] l = 2 r = 4 val = 10 updateRange(BITTree1 BITTree2 n val l r) # Find sum of all the elements from # [14] l = 1 r = 4 print('Sum of elements from [%d%d] is %d' % (l r rangeSum(l r BITTree1 BITTree2))) # This code is contributed by # sanjeev2552
C# // C# program to demonstrate Range Update // and Range Queries using BIT using System; class GFG { // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] static int getSum(int[] BITree int index) { int sum = 0; // Initialize result // index in BITree[] is 1 more than // the index in []arr index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. static void updateBIT(int[] BITree int n int index int val) { // index in BITree[] is 1 more than // the index in []arr index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of // parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] static int sum(int x int[] BITTree1 int[] BITTree2) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } static void updateRange(int[] BITTree1 int[] BITTree2 int n int val int l int r) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } static int rangeSum(int l int r int[] BITTree1 int[] BITTree2) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } static int[] constructBITree(int n) { // Create and initialize BITree[] as 0 int[] BITree = new int[n + 1]; for (int i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Code public static void Main(String[] args) { int n = 5; // Contwo BIT int[] BITTree1; int[] BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] int l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2; r = 4; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1; r = 4; Console.Write('Sum of elements from [' + l + '' + r + '] is '); Console.Write(rangeSum(l r BITTree1 BITTree2) + 'n'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // JavaScript program to demonstrate Range Update // and Range Queries using BIT // Returns sum of arr[0..index]. This function assumes // that the array is preprocessed and partial sums of // array elements are stored in BITree[] function getSum(BITreeindex) { let sum = 0; // Initialize result // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse ancestors of BITree[index] while (index > 0) { // Add current element of BITree to sum sum += BITree[index]; // Move index to parent node in getSum View index -= index & (-index); } return sum; } // Updates a node in Binary Index Tree (BITree) at given // index in BITree. The given value 'val' is added to // BITree[i] and all of its ancestors in tree. function updateBIT(BITreenindexval) { // index in BITree[] is 1 more than the index in arr[] index = index + 1; // Traverse all ancestors and add 'val' while (index <= n) { // Add 'val' to current node of BI Tree BITree[index] += val; // Update index to that of parent in update View index += index & (-index); } } // Returns the sum of array from [0 x] function sum(xBITTree1BITTree2) { return (getSum(BITTree1 x) * x) - getSum(BITTree2 x); } function updateRange(BITTree1BITTree2nvallr) { // Update Both the Binary Index Trees // As discussed in the article // Update BIT1 updateBIT(BITTree1 n l val); updateBIT(BITTree1 n r + 1 -val); // Update BIT2 updateBIT(BITTree2 n l val * (l - 1)); updateBIT(BITTree2 n r + 1 -val * r); } function rangeSum(lrBITTree1BITTree2) { // Find sum from [0r] then subtract sum // from [0l-1] in order to find sum from // [lr] return sum(r BITTree1 BITTree2) - sum(l - 1 BITTree1 BITTree2); } function constructBITree(n) { // Create and initialize BITree[] as 0 let BITree = new Array(n + 1); for (let i = 1; i <= n; i++) BITree[i] = 0; return BITree; } // Driver Program to test above function let n = 5; // Contwo BIT let BITTree1; let BITTree2; // BIT1 to get element at any index // in the array BITTree1 = constructBITree(n); // BIT 2 maintains the extra term // which needs to be subtracted BITTree2 = constructBITree(n); // Add 5 to all the elements from [04] let l = 0 r = 4 val = 5; updateRange(BITTree1 BITTree2 n val l r); // Add 10 to all the elements from [24] l = 2 ; r = 4 ; val = 10; updateRange(BITTree1 BITTree2 n val l r); // Find sum of all the elements from // [14] l = 1 ; r = 4; document.write('Sum of elements from [' + l + '' + r+ '] is '); document.write(rangeSum(l r BITTree1 BITTree2)+ '
'); // This code is contributed by rag2127 </script>
Výstup
Sum of elements from [14] is 50
Časová zložitosť : O(q * log(N)), kde q je počet dopytov.
Pomocný priestor: O(N)